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Introduction 
Coffee is one of the most important agricultural crops in the world, posing itself as the second 
most traded commodity. Brazil is the largest producer with about 30% of world production, and 
second largest consumer of coffee. Coffeaarabicais responsible for 64% of world production. 
Unequal fruit development is one of the biggest problems for coffee productivity and quality.  
 
miRNAs are about 20 to 22 nucleotides long and play a key role in negative control of gene 
expression (BARAKAT et al., 2007). By pairing specific bases, these short transcript sequences 
inhibit the translation process and/or promote cleavage of their target mRNAs (VOINNET, 2009). 
The primary transcript (pri-miRNA) is a long simple molecule of RNA with a structural 
conformation known as a hairpin. Pri-miRNA undergoes and then produces an intermediate 
precursor called pre-miRNA (VAUCHERET, H., 2006). The pre-miRNAs are transported into the 
cytoplasm they will be processed by DCL1 and will create a double strand product containing 
mature miRNA in one of their arms and in the other an additional sequence known as miRNA* 
(SCHWARZ et al., 2003). 
 
The mature miRNA, is transported to the RISC (RNA Induced Silence Complex) protein complex 
while the sequence that includes miRNA* is degraded (HAMMOND et al., 2000). In the RISC the 
Argonaute 1 (AGO1) enzymes are guided by mature miRNA and act cleaving complemental 
mRNAs into two filaments that then become unable to translate a functional protein 
(KAWAMATA; TOMARI, 2010). 
 
In plants, miRNAs play an important role in multiple biological and metabolic processes (LIU et 
al., 2008;  YANG; XUE; AN, 2007). Identified miRNA functions include control of differentiation 
and development, switch between phases (XIE et al., 2007), signaling (MALLORY; BARTEL; 
BARTEL, 2005) and response to stress  (SUNKAR et al., 2007). 

 
Material and Methods 
Libraries from green and cherry fruits of C. arabicawere used as data set to further analysis in 
this study. Trinity software (Grabherr, Haas et al. 2011)(Broad Institute and Hebrew University of 
Jerusalem) was used as tool for reconstruction of transcriptomes from RNA-seq data. 
 
We used an integrated approach to search potential conserved miRNAs (precursors and 
matures) in Coffeaarabicaand Coffeacanephoradatabases: ESTs (Expressed Sequence Tag), 
GSS (Genome Survey Sequences) and Nucleotides deposited in NCBI (National Center for 
Biotechnology Information - www.ncbi.nlm.nih.gov). Briefly, we retrieved sequences that can 
form hairpin-like structures from Coffee databasesusing Einverted (from EMBOSS) and BLASTN 
tools. The parameters for Einverted program were maxrepeat 336 nucleotides and score 
threshold 25 (THAKUR et al., 2011). We also performed Blastn tool to search hairpin-like 
sequences using all pre-miRNA sequences deposited in miRBase version 20.0 as queries. The 
e-value threshold used was 0.001, minimal match length 25 nucleotides and 80% of identity. We 
collected sequences with the length between 60 and ~ 400 nt. To get real miRNAs the set of 



hairpin-like sequences were filtered in the following steps i.e MFE (Minimal free energy) filter, 
GC content filter, mature sequence homology filter, protein coding genes filter, noncoding RNAs 
filter and Reapeat sequence filter. The putative hairpin-like sequences obtained from EMBOSS 
and BLASTn tool were filtered using MFE(s) determined via RNAfold (Vienna RNA Package) 
with the following parameters: RNA secondary folding energy threshold -20 kcal/mol and with 
the options "-p -d2 -noLP" (HOFACKER, 2009). Secondly, these structures were filtered with GC 
content ranging from 20% to 65%. In additional, plant mature miRNAs deposited in miRBase 
(Version 20.0) were aligned against the sequences and no more than 4 mismatches were 
accepted in whole mature miRNAs. Other classes of non-coding RNAs (i.e., rRNA, snRNA, SL 
RNA, SRP, tRNAs, and RNase P) were get rid of using Rfam microRNA Registry (version 
11.0)(GARDNER et al., 2009). Finally, we used Repeat masker database 
(http://www.repeatmasker.org/)(RepeatMasker 4.0.2) to remove the repeat like-sequences 
separating as positive result the putative real microRNA precursors. 
 
For further analysis a set of structural characteristics and thermodynamic parameters were 
selected and analyzed in the identified Coffeepre-miRNAs: Minimal Free Energy (MFE), 
Adjusted Minimal Free Energy (AMFE), Minimal Free Energy Index (MFEI), length, A content, U 
content, C content, G content, GC content, AU content, GC ratio, AU ratio, Minimal Free Energy 
of the thermodynamic ensemble (MFEE), Ensemble Diversity (Diversity), and frequency of the 
MFE structure in the ensemble (Frequency). The parameter adjusted MFE (AMFE) was defined 
as the MFE of a 100 nucleotide length of sequence and the minimal folding free energy index 
(MFEI) that was calculated by the following equation: MFEI = [(AMFE) × 100] / (G% + C%)] 
(ZHANG et al., 2006). The diversity, MFE and frequency of the ensemble were measured using 
RNAfold as well as MFE of the secondary structures (HOFACKER, 2009). The GC content and 
other structural characteristics were measured using Perl scripts. 
 
Results and Discussion 
In this study we identified miRNAs present in green and cherry fruits of coffee. It was possible to 
identify seven and eight MIR families, respectively. The mature miRNAs characteristics are very 
similar to the orthologs from other species (Table 1), such as composition and length, which 
ranged from 19-22 nt. The MIR families presented highly conserved composition and secondary 
structure when compared to the orthologs from other species, as demonstrated for miR159a in 
Figure 1. Another important feature is the identity of the first 5' nucleotide of mature miRNA, in 
coffee the uracil (U) was the preferred base in this position for most of the sequences 
characterized. Some studies have demonstrated that the first 5’ nucleotide is the major 
determinant for ARGONAUTE (AGO) protein association (MI et al., 2008;  MONTGOMERY et 
al., 2008) and can directly influence the biological miRNA functioning(EBHARDT; FEDYNAK; 
FAHLMAN, 2010;  VAUCHERET, HERVE, 2009). 
 
Interestingly, only two MIR family werepresent in both types of fruits, car-miR159a and car-
miR5368a. The other MIR families present were unique in each phase. This may indicate the 
importance of miRNAs in fruit ripening. Further identification of potential targets and other 
experimental analysis will provide important information for the comprehension of maturation 
process in coffee and miRNA involvement. 
 
 
 
 
 
 
 



Table 1: Characteristic ofPutativeMature miRNA predicted from Coffeaarabica Green fruit and 
Cherry fruit and their respective ortholog miRNAs. 
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