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Alejandro B. Falcón Rodríguez), Daimy Costales Menéndez, 
Dianevys González-Peña Fundora and María C. Nápoles García

RESUMEN. Las oligosacarinas son polisacáridos y 
oligosacáridos naturales que forman parte de las paredes 
celulares de las plantas y microorganismos como los hongos; 
sin embargo, las principales fuentes de materia prima para 
su preparación a gran escala lo constituyen subproductos 
agrícolas y el exoesqueleto de los crustáceos que se desechan 
de la industria pesquera. Poseen potenciales aplicaciones 
agrícolas, ya que promueven la germinación, el crecimiento 
de las plantas, el incremento de los rendimientos y el beneficio 
de la simbiosis de las leguminosas. Numerosos estudios 
demuestran la protección de los cultivos con oligosacarinas 
ante diferentes manifestaciones del estrés biótico y abiótico. 
Algunas como las quitosanas ejercen acción antimicrobiana 
directa, lo que eleva sus aplicaciones como agente protector 
de la calidad de las producciones agrícolas. Existen varios 
productos internacionales basados en estas macromoléculas 
que ostentan además, como valor agregado, la inocuidad 
y biodegradabilidad característica de estos compuestos. El 
Grupo de Productos Bioactivos (GPB) del Instituto Nacional 
de Ciencias Agrícolas (INCA) ha desarrollado varios productos 
a base de oligosacarinas que constituyen alternativas nacionales 
a productos agrícolas, como reguladores del crecimiento y los 
rendimientos, protectores de los cultivos contra el estrés biótico 
y abiótico y biofertilizantes de nuevo tipo para la fijación 
biológica del nitrógeno en las leguminosas.

ABSTRACT. Oligosaccharins are natural polysaccharides 
and oligosaccharides occurring as part of cell walls of 
plants and microorganisms such as fungi; however, main 
sources of raw materials for its large scale preparation 
are by products from agriculture and wasted crustacean 
exoskeletons from fishing industry. They have potential 
agricultural applications since they promote germination 
and plant growth, enhance crop yields and benefit symbiosis 
in leguminous. A great number of studies demonstrate crop 
protection by oligosaccharins against biotic and abiotic 
stress. Some oligosaccharins, such as chitosans, perform 
direct antimicrobial activity, this fact reinforce their 
application as protective agent of agricultural commodities 
quality. There are several international commercial products 
based on these macromolecules that bearing also, as an 
additional valor, the innocuous and biodegradable features 
of these compounds. The Group of Bioactive Products 
(GPB) from INCA has developed several oligosaccharins 
based products that constitute national alternatives to agro-
products as plant growth regulators, enhancers of crop yields, 
plant protecting agents against biotic and abiotic stress and 
new type of biofertilizers for biological nitrogen fixation in 
leguminous.

INTRODUCTION
Today, there is a growing 

global need for food production, 

due to its shortage in certain 
geographical areas and to price 
rises and production costs, which 
are prohibitive for many third 
world countries. A great portion 
of agrochemicals used at present 
have high world market prices, 

which leads to high agricultural 
production costs. In addition, 
yet  most  o f  the chemica ls 
employed to protect crops from 
diseases and some of them that 
improve productive efficiency are 
considered contaminating agents 
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of soils, crops and biodiversity, 
causing animal  and human 
diseases.

Modern science in the latest 
20 years has been designed 
to search for  solut ions and 
alternatives to those problems 
tha t  may keep agr icu l tu ra l 
production efficiency. Therefore, 
the study of several branches 
of plant biology has deepened 
in plant mechanisms against 
different natural and human 
challenges, such as various 
biotic and abiotic stresses to 
which crops are subjected today. 
Results of the last two decades 
glimpse the development of a 
new generation of innocuous 
or less aggressive compounds 
to the environment and the 
man; their usefulness is based 
on manag ing natura l  p lan t 
responses against  d i fferent 
stresses and maximizing inherent 
crop potentialities to raise yields.

This review deals with the 
characteristics and potentialities of 
a group of innocuous compounds 
(oligosaccharins) derived from 
nature with good prospects 
in organic and/or sustainable 
agriculture or even in a large-scale 
or intensive agriculture.

OLIGOSACCHARINS

They were discovered as a 
result of studies made on two very 
important plant biology issues 
during the 70s and 80s. Firstly, 
multiple groups of the first world 
studied plant-microorganism 
interaction, particularly plant 
responses to pathogens and 
predators, as well as signals 

related to these responses; 
secondly, a few researchers 
guided by Dr. Peter Albersheim in 
Georgia, USA, studied plant cell 
wall structure and components 
under suspicion of its complexity, 
for its functions in the plant were 
probably not only to support, 
but also its content shape and 
protection.

Both lines converged on very 
important results that caused a 
revolution of concepts and views 
in both issues. Thus, it is now 
known that plant cell wall is not 
only a reservoir or cell support, 
but a deposit of hormones acting 
on a wide range of plant functions, 
maybe directly or indirectly on the 
so-called traditional hormones and, 
especially, activating plant defense 
and resistance responses against 
pathogens and predators.

CONCEPTS: ELICITORS 
AND OLIGOSACCHARINS

Plants have the ability to 
defend themselves from most 
microorganisms, potent ia l ly 
pa thogens ,  l i v i ng  i n  t he i r 
environment. Crops generally have 
structural barriers and chemical 
compounds preventing infection 
progress; apart from these preset 
defensive mechanisms, plants can 
induce the expression of many 
defense genes, both locally and 
systemically in all tissues, with a 
coordinated action that holds up 
any disease establishment (1, 2).

Plant defense response 
is the result  of recognizing 
various compounds released by 
pathogens and the plant itself 
during pathogenesis process, 
when enzymes excreted by both 

contenders degrade cell walls 
of the other organism (3, 4, 5). 
Released structures recognized by 
the plant are called elicitors.

Elicitors are substances that 
can induce defensive responses 
when added in plant tissues or 
cells. They are compounds of 
diverse structure and origin: 
oligosaccharides, glycoproteins, 
peptides, lipids, among others. 
It has been shown that elicitors 
of oligosaccharide type have 
significant roles in plant-pathogen 
interactions (3).

P o l y s a c c h a r i d e  a n d 
glycoproteic components from 
cell walls constitute a source 
o f  o l igosacchar ides,  which 
besides being elicitors of plant 
defense responses, some of 
them have effects on plant 
growth and development at low 
concentrations. Therefore, the 
term oligosaccharins refers 
to oligosaccharides of different 
origin with biological effects on 
plants. They consist of a chain 
of glycoside residues linked by 
glycosidic bonds (6, 7).

Types, classification, 
localization and structure

Ol igosacchar ins  a re  o f 
endogenous or exogenous type, 
depending on the way they are 
obtained or released from cell 
walls of the plant or pathogen, 
respectively. According to its origin, 
there are different types (Figure).

Endogenous oligosaccharins

Oligogalacturonides (pectic 
oligosaccharides) and xyloglucans 
are among the most widely 
known and studied endogenous 
oligosaccharins (Figure).
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Oligogalacturonides consist of 
a linear chain of galacturonic acid 
molecules linked by α-1-4 bonds. 
The number of D-galacturonate 
r e s i d u e s  c o n t a i n e d  i n  a n 
oligosaccharide defines its degree 
of polymerization (5). They are 
located in the pectic portion of plant 
cell wall and are naturally released 
from pectin through enzymatic 
hydrolysis of plant action or as a 
result of pathogen attack (4, 5).

Meanwh i l e ,  xy log lucan 
polymers are major hemicellulosic 
polysaccharides making up the 
primary cell wall structure of non-
poaceas dicot and monocot plants. 
They also form part of reserve 
polysaccharides in dicot seeds. 
They consist of a skeleton of glucose 
residues linked by β-1-4 bonds; 
some of these residues may be 
replaced by α-xylose, β-galactose 

and α-Fucose (8). These polymers 
f ragmented by chemical  or 
enzymatic hydrolysis release 
xyloglucan oligosaccharides with 
plant biological activity (9, 10). 
Specifically, the phenomenon of 
growth and extension at cellular 
level is closely related to xyloglucan 
polymer metabolism whereas its 
enzymatic degradation causes 
plant cell wall weakening, besides 
releasing the above mentioned 
fragments, (11, 12).

Exogenous oligosaccharins

Oligoglucans, Oligochitins, 
Poli and Oligochitosans and Lipo-
chitin-oligosaccharides are known 
among exogenous oligosaccharins 
(Figure).

Ch i t i n  de r i va t i ves  and 
oligoglucans are released from 
the cell wall of various pathogens 
containing them, through enzymatic 

degradation of glucanase and 
chitinase enzymes excreted by 
the plant in response to pathogen 
at tack dur ing pathogenesis 
process (4, 7). In turn, Nod factors 
(Lipo-chitin-oligo) are de novo 
synthesized and excreted by 
Rizobiaceae bacteria, in response 
to chemical signals released by 
the plant and detected by the 
microorganism (13).

Other sources 
of production

Despite the origin above 
mentioned, oligosaccharins can be 
extracted from other richer sources 
contained in polysaccharides; 
thus, commercial citrus pectin 
is the main source to obtain 
oligogalacturonides while tamarind 
seeds are rich in xyloglucans. 
Crustacean exoskeleton is very 
rich in chitin and the permanent 

 b-1,3-1,6 glucans

Oligochitins

Oligochitosan

Oligogalacturonides 
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Nuñez, M. N. Desarrollo de activadores de las 
plantas de amplio espectro de acción. Informe 
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Cuba, 2005.

B Falcón, A. B. Evaluación de Oligosacarinas 
nacionales de quitosana en la estimulación 
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de cultivos de interés económico. Informe 
Final del PNCT, no. 00300277, Inst. CITMA, 
2009, p. 77.

natural presence of this chemical 
structure in biosphere is of 10 
gigatons (1013 kg) (14). Because 
of the versatile applications of its 
derivatives, mainly chitosan and 
glucosamine, chitin is essentially 
produced on an industrial scale 
from crab, shrimp, lobster and 
prawn, at about 10,000 tons per 
year (14, 15).

Several worldwide research 
groups and agricultural enterprises 
have started to develop alternative 
a g r o c h e m i c a l s  b a s e d  o n 
oligosaccharins; the choice of an 
appropriate source for obtaining 
polymers and oligosaccharides is 
one of the key factors in reducing 
production costs and sale prices for 
different agricultural systems. Thus, 
90% chitin and chitosan-based 
products come from exoskeleton of 
million tons of crustaceans caught 
on a world scale that constitute 
industry wastes (15). 

A n o t h e r  e x a m p l e  i s  a 
commercial ly sold β-glucan 
product. A major French company 
“GOEMAR” together with the 
National Center for Scientific 
Researches of France created a 
laminarin-based product, Iodus 
40Ò (Vacciplant) ,  extracted 
from seaweed, which activates 
intrinsic plant protection against 
po ten t i a l  pa thogens  when 
applied preventively to various 
commercially important crops.

I n  C u b a ,  t h e  G r o u p 
of Bioactive Products (GBP), 
pertaining to the National Institute 
of Agricultural Sciences (INCA), 
made a methodology for obtaining 
a mixture of biologically active plant 

oligogalacturonides, derived from 
commercial citrus pectin, named 
“Pectimorf” (16) and, at present, 
they are developing another 
methodology to prepare a chitosan-
based product, derived from chitin 
of Cuban lobster exoskeleton 
wastes of fishing industry. Both 
products have shown different 
biological effects on economically 
interesting cropsA (16).

BIOLOGICAL EFFECTS 
OF OLIGOSACCHARINS

Oligosaccharines were first 
recognized as polysaccharides 
and  o l i gosacchar ides  tha t 
induced defensive responses and 
resistance to plants. However, 
subsequent studies performed in 
the 90s involved them in several 
responses related to plant growth 
and development (6, 17). The 
discovery of the main carbon 
skeleton structure from nod factors 
excreted by Rizobiaceae bacteria 
and its effect on legume root 
morphogenesis helped establish 
oligosaccharins as a new hormone 
hierarchy in plants, whose action 
precedes the synthesis and 
accumulation of already known 
traditional hormones (6, 18, 19).

Regulation of plant growth 
and development

Exogenous  app l i ca t i on 
of oligosaccharins influences 
p l a n t  t i s s u e  g r o w t h  a n d 
development; such evidence has 
been essentially obtained with 
oligosaccharides derived from 

plant cell wall polymers, also with 
chitin and chitosan derivatives1 
(20, 21). Table I presents some 
examples of endogenous and 
exogenous oligosaccharin effects 
in commercially important cropsB 

(22, 23, 24, 25, 26, 27).
A m o n g  e n d o g e n o u s 

oligosaccharins or derived from 
plant cell walls, oligogalacturonides 
or oligopectates have been most 
widely studied for their effect on 
plant growth and development. In 
many cases studied, its effect on 
the plant seems to be opposite to 
auxin action.

The  nega t i ve  e f fec t  o f 
oligogalacturonides of different 
degrees  o f  po lymer iza t ion 
(DP) was proved in pea stem 
elongation induced by indole 
acetic acid (IAA), inhibition of 
root formation in thin cell layers 
growing inside rooting culture 
medium, reduction of a protein 
accumulation in culture medium 
induced by certain IAA levels in 
the presence of oligopectates 
in the medium and inhibition of 
cell division induced by auxins 
in phloem parenchymatous cells 
(5, 28). However, further results 
of a mixture of oligopectates 
commercially known as Pectimorf 
(Pm) included in an in vitro medium 
culture of different species, with 
certain plant hormonal balance, 
indicate an auxin effect based on 
rooting stimulation, bud increase 
and plant growth (21, 22, 29). 
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Tabla I. Efecto de oligosacarinas sobre el crecimiento, el desarrollo, los rendimientos y la calidad 
poscosecha de diferentes cultivos

Cultivation Effext iobserved in different types of applications References

α 1-4 Oligogalacturonides (oligopectates)
Sugar cane, banana Hormone replacement by Pectimorf (Pm) in vitro culture increases the 

number of shoots, rooting and benefits subsequent acclimatization process 
vitroplant.

22, 23, 24

Grape Foliar spraying of a mixture of oligogalacturonides in clusters prior to 
ripening grapes cause increased coloration and anthocyanin content in the 
fruit.

25

Areca palm The double foliar spray the mixture Pm (2 mg L-1) increases growth and 
reduces time areca plants aviveramiento.

26

Lettuce radish The foliar spray the mixture increases Pm air mass in lettuce and root length 
and shoot and root mass radish.

27, 28

Tomato Imbibition of seeds with Pm and its combination with mycorrhiza increased 
the rooting of seedlings. The foliar spray increases growth and increases 
crop yields.

A, 28

Oligosaccharides xyloglucans
Arabidopsis thaliana 0.1 mg L-1 benefits primary root elongation coupled with a slowdown in 

the formation of lateral roots.
34, 35

Tobacco (cell line BY-2) Shortening the cell cycle through the reduction step G1 in mitosis. 35, 36

Arabidopsis thaliana Stimulate growth and reversed large and small cellular phenotypes that 
normally exhibit WEE1oe and Spcdc25 genotypes, respectively.

35,36

Chitosan. Application imbibition coating or seed
Sunflower MM different chitosan. immersed for 18 h in the lower MM (28 kDa) 

increased total seed caused shoot mass, increased germination and 
isoflavonoids level.

42

Pearl Millet Increased growth Millo. 43
Corn, Wheat Increase germination quality and vigor of the positions. 44, 45
Peanut Increased germination, lipase activity and levels of AG y AIA. 46
Rice Imbibing seeds + application to the substrate significantly increases 

performance. 
47

Cotton Coating 0,2 % for 30 minutes caused the greatest increases in plant height 
and fruit yield.

48

Chitosan. Foliar spray application
Soja, Corn Applications of chitin and chitosan pentamer causes variations in 

photosynthesis, stomatal conductance, transpiration and [CO2] intercellular. 
49

Strawberries Four foliar applications of chitosan caused increased height, number and 
fresh weight and dry leaves and yield (number and mass). 

50

Tomato, Lettuce Application of chitosan 100 kDa 0,1 % growth and increases yields. 50 % 
increase in the leaf area of lettuce. 

48

Potato Sprinkling of chitosan increases the performance and quality of mini tubers, 
as well as growth and yields in field experiments.

52, C

Tobacco, Tomato Chitosan polymer dispersion increases growth and yields in experiments 
and production scale extensions. B, C
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cultivos de interés económico. Informe Final 
del PNCT, no. 00300330, Inst. CITMA, 
2012, 70 p.

In addition, ex vitro results have 
been obtained with the same 
mixture related to root formation 
at similar levels to those induced 
with IAAA (30).

A potential application of 
oligopectates (and maybe of other 
oligosaccharins) is to improve 
color in some fruits. Recently, a 
research group studied vine color 
response when applying a mixture 
of oligogalacturonides with lower 
degree of polymerization than 20 
on a production scale. Results 
showed significant color increases 
over the control and commercial 
product (Ethephon) used for 
this purpose. Such increase 
was directly related to higher 
anthocyanin contents (responsible 
for vine color) and also with gene 
expression of phenylalanine 
ammonia lyase (PAL) within 
the early days of application, 
an enzyme that opens multiple 
enzymatic pathways, some of them 
leading to anthocyanin formation 
(24). This correlation supports the 
possibility of other PAL inducers to 
increase grape color.

S p e c i f i c  x y l o g l u c a n 
fragments show anti-auxin or 
auxin activity depending on the 
type of monosaccharide residues 
l inked to ol igomer chain of 
xyloglucan and the concentration 
used (31, 32). Its effects at 
nanomolar concentrations make 
them primary signals to regulate 
hormones.

More recent studies with 
x y l o g l u c a n s  c o m i n g  f r o m 
tamarind seeds showed effects 
in promoting primary root growth 
interacting with reduced lateral 
root  format ion (33,  34) ,  as 
well as shortening cell cycle, 
pa r t i cu l a r l y  a t  G1  m i t os i s 
phase and reversal occurrence 
of larger or smaller sizes of 

c e l l  p h e n o t y p e s  o b t a i n e d 
with part icular genotypes of 
Arabidopsis thaliana (34, 35).

Meanwhile, both chitosan 
p o l y m e r  a n d  i t s  s m a l l e r 
der iva t ives are  cons idered 
plant growth and development 
regulators when stimulating root 
and vegetative growth of several 
species (20, 36), shortening 
flowering period and improving 
flowering and fruiting (37, 38). 
Higher yields and crop quality have 
been observed in several crops 
with these derivatives, which have 
allowed them to be patented for 
this purpose (36, 39). In general, 
depending on plant organ in 
question, the aforementioned 
beneficial results have been 
achieved when treating seeds and 
plant roots or by spraying leaves 
at the right times for each cropB 
(36, 39, 40).

In turn, exogenous plant 
a p p l i c a t i o n s ,  m a i n l y  w i t h 
o l i g o g a l a c t u r o n i d e s  a n d 
chitosans (Table I) on a field 
and greenhouse scale, have 
shown that such oligosaccharins 
inf luence growth and yields 
o f  economica l l y  impor tan t 
spec ies  f rom So lanaceas , 
C u c u r b i t a c e o u s ,  P o a c e a s 
and Fabaceas, among other 
familiesA, B,C (25, 26, 27, 40, 41, 
42, 43, 44, 45, 46, 47, 48, 49 
50). Some authors suggest the 
positive impact on plant growth 
is related to an antitranspirant 
e ffec t  induced by s tomata l 
closure (51, 52).

According to some studies, 
reducing irrigation with chitosan 
to pepper p lants a l lowed a 
better adaptation and water 

consumption by the plant, since 
foliar application of the polymer 
reduced water use by plants 
between 26 and 46%, whereas 
biomass production and yield 
remained similar to control plants 
that were not subjected to water 
deficit (53). This occurred by 
decreasing water loss through 
s t o m a t a ,  d u e  t o  s t o m a t a l 
closure induced by chitosan. 
Th is  s tomata l  c losure  was 
subsequently studied, showing a 
higher abscisic acid in chitosan-
sprayed leaf cells, which reduced 
stomatal conductance (52). This 
supports the use of chitosan as 
an antitranspirant to preserve 
water applied to agriculture.

Additionally, synthesized 
oligosaccharins and excreted by 
nitrogen-fixing rhizobacteria from 
Rhizobiaceae family cause seed 
germination of various plants and 
are involved in primary root events 
leading to establish symbiosis 
between legumes and mentioned 
bacteria (18, 54, 55). These 
oligosaccharin structures consist 
of chitin oligosaccharides of 4 or 
5 N-acetyl glucosamine residues 
linked to other complex groups 
varying with Rhizobium species. 
These oligochitins are responsible 
for inducing root cortical cell 
divisions that initiate and lead to 
subsequent nodule formation (56).

INCA’s GBP studied chitosan 
applications to in vitro soybean 
exper iments combined with 
Bradyrhizobium elkanii micro-
symbiont. By including chitosans 
of different molecular mass to 
plant growing medium, increased 
the number of nodules and its dry 
mass formed in the root depending 
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de Ciencias Agrícolas, Mayabeque, Cuba, 
2010, 56 p.

on the concentrations used. An 
effect was also observed on 
seedling growth and root volume, 
depending on the concentration. 
Concentrations above 500 mg L-1 
did not benefit root growth or plant 
aerial systemD (57, 58).

INDUCING PLANT 
RESISTANCE AGAINST 
PATHOGENS

β-Glucan 
oligosaccharides

Oligosaccharides derived 
from β-glucan polymers making 
up cell walls of Phytophthora 
pathogens have been established 
as inducers of plant defensive 
responses. Thus, a branched 
hepta-β-glucoside, obtained 
from wall glucan of Phytophthora 
sojae by acid hydrolysis, proved 
to be a very active elicitor of 
phytoalexin-gliceoline synthesis 
in soybean cotyledon cells (59), so 
demonstrating that partial glucan 
hydrolysis of P. sojae released 
fragments with elicitor activity in 
different plants of Fabaceae (60) 
family, indicating a similar system 
of perception in this plant family.

In tobacco cells, hepta-β-
glucoside did not act as elicitor; 
however, a linear chain of β 1-3 
glucan (laminarin), extracted from 
Laminaria digitata alga, proved to 
be an active elicitor of defensive 
responses (61) and even reduced 
vine leaf fungal infection (62). 
Regarding the above mentioned 

results (Table II), the French 
company GOEMAR, together 
with the National Center for 
Scientific Researches, developed 
a laminar in-based product , 
Iodus 40® (Vacciplant), extracted 
from seaweed, which activates 
intrinsic plant protection against 
potential pathogens when applied 
preventively.

Pectic oligosaccharides or 
oligogalacturonides

Oligogalacturonides derived 
from pectic polysaccharides 
of plant cell walls have been 
described as inducers of a great 
variety of defensive responses in 
cells, organs and whole plants of 
many species, among which are 
phytoalexin induction, proteinase 
inhibi tors,  PR proteins and 
lignification process (5, 7).

Oligogalacturonides can be 
generated from pectic substances 
of the primary plant cell wall by 
partial acid hydrolysis or by the 
action of pectinase enzymes or 
pathogen pectatoliases. Moreover, 
it is known that, regardless of the 
generation method, they depend on 
the degree of polymerization (DP) 
for inducing defensive responses, 
the most active DP being between 
10 and 12 (5, 7).

I n  t h e  l a t e s t  d e c a d e , 
protection of two commercially 
important species (Table II) 
against its major pathogens was 
reported by inducing resistance 
with oligogalacturónidosA (63). It 
is essential to note that, unlike 
chitosans, oligogalacturonides 
and β-glucans do not have 

direct antimicrobial action on 
microorganisms, so that their crop 
protection results from activating 
induced plant resistance.

Polymers and chitosan 
oligosaccharides

Chitin, a polymer of N-acetyl-
glucosamine linked by β 1-4 bonds, 
is a common cell wall component 
of several fungal families (64). 
Its fragments (N-acetyl-chito-
oligosaccharides) have been 
involved in inducing a variety of 
plant defense responses, such as 
phytoalexin induction, lignification, 
PR proteins, defensive gene 
expression, etc., mainly in monocot 
species and especially in rice cell 
suspensions (65).

Besides, the activation of 
secondary responses related to 
defensive signal transduction 
by chitin fragments has also 
been  s tud ied ,  h igh l igh t ing 
changes in ion flux and protein 
phosphorylation, depolarization 
of plasma membrane and K+ 
and Cl- ion efflux, cytoplasmic 
acidification, generation of reactive 
oxygen species and biosynthesis 
of jasmonic acid (7, 65, 66).

Chitosan is a polymer of β 
1-4 glucosamine, a natural cell 
wall component of Zygomycete 
fungi (64). Both the polymer and 
its oligomers are potent inducers 
of defensive responses and plant 
resistance against pathogens. 
However, the concentrations 
required for activating defensive 
responses are higher than those 
needed to induce such activities 
with chitin oligomers (7, 65).
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Tabla II. Resultados de protección de diferentes especies de plantas contra patógenos por oligosacarinas

Culture Protective effect observed Reference
β 1-3 glucans
Grapes Fragment of laminaria (β glucan 1-3) cause induction of defensive response 

and resistance against Botrytis cinerea and Plasmopara viticola.
63, 64

α 1-4 oligogalacturonide
Grapes Induction signals and defensive responses against Botrytis cinerea Vid. 65
Tobacco Induction of defense responses and resistance against Phytophthora 

nicotianae with Pm.
A

Chitosan-Protection postharvest-Frutales
Papaya, Mango Protección de la fruta vs. la Antracnosis (Colletotrichum gloeosporioides). 87, 88
Peaches, Pears and Kiwi Reduction fungal rots in storage of these fruits when covered with chitosan. 89

Citrus Protection vs. Penicillium and Botrytis fruit by coating chitosan. 90

Strawberry Coating fruit with chitosan and its combination with Ca2 + reduces incidence 
of pathogenic fungi, reduces weight loss and increases firmness and shelf life.

91

Chitosan-protection food crops postharvest-interest
Rice Or protection. Blight (Pyricularia grisea) by Poli and chitosan oligo. 92, 93
Vid Protection and fruits or leaves gray mold (Botrytis cinerea) and poly 

oligoquitosanas.
94, 95

Cucumber Protection vs. gray mold (Botrytis cinerea) with chitosan polymer. 96
Carrot Root protection vs. Slerotinia sclerotiorum with hydrolyzed chitosan. 97
Tomato Plant protection vs. Fusarium oxysporum and fruit vs. soft rot caused by 

Rhizopus sp.
98, 99

Tomato Plant protection against infection by Xanthomonas gardneri. 100

Chitosan-crops of economic interest
Tobacco Protection vs. Black shank (Phytophthora nicotianae) of systemic resistance 

induction by application of chitosans of different characteristics. 
72, 75

Tobacco Protection vs. mosaic virus (TMV) and necrosis virus (TNV) with 
oligoquitosanas and its relationship with the ABA. 

101, 102

Cultivos Tropicales, 2015, vol. 36, special edition, pp. 111-129

A s  i n  t h e  c a s e  o f 
o l igoga lac tu ron ides ,  ch i t in 
fragments (and also those of 
chitosan) are dependent on the 
degree of molecular polymerization 
(DP) to activate the aforementioned 
defensive responses, its sizes 
being above DP4, and mainly 
heptamer and octamer, which elicit 
responses at lower concentrations 
(7, 66).

C h i t o s a n  i s  t h e  m o s t 
studied oligosaccharin with more 
applications in pre- and post-
harvest field of agriculture. It has 
three essential characteristics of 
biological activity that makes it 

desirable in this field: It improves 
growth and yields of many crops; 
it induces plant defense and 
resistance against pathogens 
and, unlike other oligosaccharins 
studied, i t generally inhibits 
microorgan ism growth  and 
development (16, 67, 68, 69, 70). 
Moreover, its biological activity is 
related to free positive charges 
present at the amino group under 
acid conditions, interacting with 
opposite charges of cell wall 
components and membranes of 
microorganisms and plants.

Chitosan antimicrobial 
activity

Chitosan antimicrobial activity 
has been established both in vitro 
and in situ experiments (14, 67). 
Literature reports that growth 
inhibition of many pathogens, 
including fungi, bacteria and 
oomycetes, is highly correlated with 
increased chitosan concentration 
in culture medium, indicating that 
a higher concentration causes 
a greater inhibition, so there are 
differences between fungistatic 
and fungicidal action, according to 
tested concentrations (Table III). 
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Microbial species Antimicrobial effect observed Reference
Bacterium
Escherichia coli Reduction in cell viability. 124
Bacillus subtilis Reduction in cell viability. 124
Staphylococcus aureus, S. simulans It caused involvement of cell viability and permeabilization 

and cell membrane depolarization. 
125

Bradyrhizobium elkanii Inhibition of cell viability at concentrations above 0,5 g L-1. D

Fungi
Fusarium oxysporum, F.solani Inhibition of mycelial growth and spore germination. 77, 126

Botrytis cinerea Mycelium growth inhibition, germination spore, germ tube 
elongation and causes damage to the membrane spores.

79

Alternaria alternata, solani Inhibition of mycelial growth and formation spore. 80

Aspergillus niger Inhibition of mycelial growth and spore germination. 81

Rhizopus stolonifer Chitosans of different MM affect vegetative growth, 
sporulation and spore germination 

88, 127

Penicillium digitatum y expansum Affectation mycelium, reduced viability of the spores and 
damaged cell membranes. 

69, 79

Pochonia chlamydosporia (nematófago), 
Beauveria bassiana (entomopatógeno), 
Trichoderma harzianum (micoparásito)

Inhibition of vegetative growth and spore germination with 
different degrees of involvement for each gender.
Vegetative sensitivity: 
Trichoderma>Fusarium>Pochonia>Beauveria
Sensibilidad en germinación de esporas: 
Trichoderma= Fusarium>Pochonia>Beauveria

77

Oomycetes
Phytophthora capsici, P. nicotianae 
y P. palmivora

Inhibition of vegetative growth and different stages of the 
life cycle as sexual reproduction and asexual.

17, 72, 73, 
74, 75, E

Pythium aphanidermatum Reduced radial vegetative growth and infection in cucumber. 76, 83

Tabla III. Actividad antimicrobiana de quitosanas y oligoquitosanas en diferentes microorganismos

E González, P. D. Efecto de un polímero de 
quitosana en el desarrollo de Phytophthora 
nicotianae y Phytophthora palmivora. Tesis de 
Maestría, Facultad de Biología, Universidad 
de la Habana, La Habana, Cuba, 2011, 50 p.
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For more than two decades, 
these compounds have been 
evaluated over all fungal stages 
of life cycle, its reproductive 
structures being mostly affected 
(14, 67).

The study of chitosan effect 
on the group of oomycetes is 
more recent. Some authors have 
shown that chitosan polymers 
affect the vegetative development 
of Phytophthora isolates. Higher 
concentration depending on the 
species causes a significant 
colony growth reduction, which 
has been observed in species 

such as P. nicotianae, P. capsici 
and P. palmivora; all of them are 
important pathogens of several 
plant species5 (71, 72, 73, 74). 
Some of these spec ies  a re 
more sensit ive than others; 
for example, P. nicotianae and 
P. capsici reduced over 50 % 
their vegetative growth with 
about 0,5 g L-1 (71, 73, 74), while 
P. palmivora needed more than 
2 g L-1. Between oomycetes and 
true fungi, results generally show 
an apparent higher sensitivity in 

the first ones, as observed by 
comparing experiments between 
Phytophthora and Pythium against 
species of different fungal groups; 
some nematophagous  and 
entomopathogenic fungi are even 
much less sensitive (71, 74, 75).

O t h e r  s t a g e s  o f 
microorganisms, as reproductive 
and asexual dispersion structures, 
may be more sensitive than those 
of the vegetative growth. Inhibition 
of spore germination by chitosan 
has been observed in many 
fungi, such as Aspergillus niger, 
Alternaria alternata, Rhizopus 
stolonifer, Mucor sp. and Pochonia 
chlamydosporia (74, 75, 76, 77, 
78, 79, 80).
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W i t h i n  o o m y c e t e s , 
Phytophthora has been the most 
studied genus. Chitosan polymers 
and oligomers inhibit zoospore 
and zoosporangia formation 
and germination in P. capsici, P. 
nicotianae and P. palmivoraE (16, 
71, 72, 73).

Physic-chemical properties 
of these compounds also inhibit 
microorganism growth.  For 
example, when polymer molecular 
mass and degree of acetylation 
decrease,  myce l ia l  g rowth 
inhibition and spore germination of 
Phytophthora nicotianae increase 
(16, 73). Similarly, in Rhizopus 
stolonifer, variations from 1.0 
to 2,0 g L-1 did not modify spore 
formation or germination; however, 
inhibition of these processes was 
observed when using chitosans of 
different molecular mass (76).

It is suggested that chitosan 
antimicrobial activity is mainly 
due to polycationic character 
of the molecule in solutions at 
pH below 6.0, since positively-
charged amino groups can interact 
with phospholipids from cell 
membranes of microorganisms 
and modify its permeability. This 
may cause osmotic imbalances 
that lead to structural disruptions 
and eventually to cell lysis (67, 81). 
For the case of oligochitosans, the 
internalization of these molecules 
in microbial cell was proved and 
its possible interaction with DNA 
is speculated (72). The amount 
of damage found can vary, mainly 
depending on the physic-chemical 
properties of the polymer and 
concentrations employed (14, 67).

Desp i te  many ch i tosan 
benefits shown in dozens of works 
and the increased number of 
patents for its applications in 
the latest 15 years, this polymer 
is not yet so exploited in the 
global agricultural context. In fact, 
most agricultural chitosan-based 
products (Elexa®, Chitogel®, 
Aminogro®, Chito-Plant®, Chito-
Care®, etc.) started to appear 
about a decade ago and, so far, 
they do not have a high demand 
or production (41, 82). However, a 
recent boost of chitosan evaluations 
has been noticed under controlled, 
non-controlled and glasshouse 
conditionsA (16, 41, 82, 83) and 
even its extension and assessment 
as a result of governmental 
decisions. At present, this polymer 
is known among biopesticides as 
a “crustacean-derived activator of 
plant defense” (84).

Plant protection 
by chitosans against 
biotic stress

Crop protect ion through 
chitosan applications against its 
main diseases have been studied 
for over 20 years in different 
plant-pathogen interactions by 
many research groups worldwide. 
Several examples of protection 
reported in distinct species and 
growing times are referred in 
Table II (70, 73, 85, 86, 87, 88, 
89, 90, 91, 92, 93, 94, 95, 96, 
97, 98, 99, 100). Crop protection 
against pathogen attack may be 
due to the antimicrobial activity of 
these polymers and oligomers on 
microorganisms or may be it is the 
result of a higher basal resistance 

caused by activating resistance 
induced by these compounds in 
the plant. In many cases, both 
effects can occur simultaneously 
(16, 67, 69, 70).

Plant protection by 
oligosaccharins against 
abiotic stress

More recent studies have 
demonstrated potentialities of 
oligosaccharins in certain species 
protected against different forms 
of abiotic stress. Most studies 
refer to evaluations and results of 
the last decade with exogenous 
oligosaccharins; however, results 
with endogenous oligosaccharins 
have been published as patents.

In this sense, a process 
for adapting plants to different 
abiotic stresses was recently 
patented, including foliar spraying 
of a xyloglucan derivative under 
particular conditions of application. 
According to authors, this process 
benefi ts plant growth under 
various stresses, including low 
temperatures, drought, humidity 
or salinity, by stimulating enzymes 
and compounds which decrease 
the levels of reactive oxygen 
species released during stress and 
also widen some signals that lead 
to the formation and/or activation 
of traditional hormones acting in 
plant cell (101).

A g r o w i n g  n u m b e r  o f 
protection results against abiotic 
stress have been reported in plants 
with different types of chitosan 
treatment. The studies range from 
controlled trials up to large-scale 
experiments in different crops. 
Meanwhile, applications can be by 
seed coating or soaking for a short 
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F Cabrera, J. C. Obtención y purificación de 
oligogalacturónidos bioactivos a partir de la 
pectina cítrica. Informe Final del PNCT, no. 
002, Inst. CITMA, La Habana, Cuba, 2000, 
p. 150.

time with high concentrations or the 
reverse, lower concentrations and 
longer contact times, depending 
on the type of seed. Also, good 
resul ts  were obta ined wi th 
treatments by foliar spraying, 
applications to growth substrate or 
by introducing roots or cuttings in 
chitosan solutions. Various abiotic 
stresses have been tested with 
more or less success, depending 
on experimental conditions. Some 
examples of species protection 
against different forms of abiotic 
stress are summarized in Table IV 
(102, 103, 104, 105, 106).

ECOLOGICAL BENEFITS 
OF OLIGOSACCHARINS

The origin and oligosaccharide 
c h e m i c a l  s t r u c t u r e  o f 
oligosaccharins talks about its 
possible non-toxic characteristics. 
Ol igogalacturonides making 
up Pectimorf are extracted by 
enzymatic hydrolysis of citrus 
pectin, a widely used raw material 
in food industry, whose final 
product is biodegradable by soil 
microorganisms; once it is applied, 
no traces of the product are left on 
the plant or substrateF.

Something similar happens 
with chitin and chitosan-based 
products; although it can be toxic 
to many soil phyto-pathogens, 
i t  is  an excel lent  source of 
carbon for others. Moreover, 
chitin and chitosan products 
are widely used in human and 
veterinary medicine, cosmetics 
and industry, because it is safety 
for humans (15, 107).

Another important ecological 
contribution of both products 
is the fact that raw materials 
(industrial pectin and chitin), from 
which they come, constitute the 
added value of potentially polluting 
byproducts of food and fishing 
industries, respectively, as they 
are wastes of juice production 
and exoskeleton of crustaceans 
caught for human consumption. 
Therefore, the preparation of both 
products provides an economic 
and ecological output of both 
industrial byproducts.

RESULTS AND 
PROSPECTS FOR CUBAN 
OLIGOSACCHARIN-
BASED PRODUCTS

INCA’s GBP has a 20-year-
o l d  e x p e r i e n c e  s t u d y i n g 
oligosaccharins, its preparation 
and effects on plants. The group 
develops products based on 
oligogalacturonides (Pectimorf®) 
and  ch i t osans  (Qu i toMax , 
requested to CIPO), as principal 
active agents, using their own 
methodologies (16). Both products 
have different biological effects on 
plants and allow to be applied as 
alternative products for different 
agrochemicals.

Pectimorf (Pm) promotes plant 
root development at concentrations 
between 5 and 20 mg L-1, which has 
been demonstrated in experiments 
with seeds and cuttings treated by 
foliar spraying and by combining 
the forms of applications mentioned 
in vegetables, fruit trees and 
ornamental plants (25, 26, 27). At 
present, this product is introduced 
and spread as rooter in agriculture 
throughout the country, and new 
presentations are being tested to 
enable its applications.

Increased leaf development 
and plant growth have also been 
observed in Solanaceae and 
legumes, as well as in soybean 
and bean yields (26, 27, 108). 
Likewise, a positive effect has 
also been shown on activating 
growth of slow-growing ornamental 
plants, such as Areca, Anturium 
and orchids, by foliar spraying of 
Pm at different concentrations and 
application times (25, 109, 110).

P e c t i m o r f  h a s  b e e n 
extensively studied in  v i t ro 
cu l t u re ,  demons t ra t i ng  i t s 
ability to substitute traditional 
hormones (auxin and cytokinins) 
at different stages and diverse 
crops: sugarcane, coffee, citrus, 
potato, tomato, tobacco, banana, 
rice, garlic, among othersF (21, 
22, 23, 29). In this case, there 
are  some crop benef i ts  as 
rooting promotion, increased 
buds and good results at ex 
vitro adaptative stage. Other 
results recorded with Pm are a 
delayed opening of freshly cut 
flowers, specifically roses, and 
increased buds in violets treated 
with product sprayingF.

Pectimorf has also been 
re la ted  to  p lan t  p ro tec t ion 
a g a i n s t  d i f f e r e n t  t y p e s  o f 
stress. For example, induction 
of defensive responses and 
protection against oomycetes 
( P h y t o p h t h o r a )  h a s  b e e n 
e v a l u a t e d  i n  t o m a t o  a n d 
tobacco by seed treatment and 
foliar sprayingA.
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Tabla IV. Resultados de protección contra el estrés abiótico inducido por quitosanas

Culture Antistress effect observed in different types of applications Reference

Rice
Chitosan solution in hydroponics reduced the presence of vanadium in 
stems and root buds allowing rooting and growth in treated seedlings 
stressed above control.

104

Lettuce, Onion, Tomato Seed treatments and foliar spray combination with chitosan induces a 
complex salt tolerance during germination and growth. 105

Rice The foliar spray prior Chitosan drought stress caused higher yields under 
such stress and a good recovery plants. 106

Grape (Vid) 
Imbibition stakes in Chitosan induced tolerance against drought stress and 
low temperatures expressed as greater rooting, sprouting and increased 
leaf chlorophyll structures formed in multiplication.

107

Corn Seed treatments induce tolerance to the growing plant under stress acid. 108
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Regarding abiotic stress, the 
potential of this oligogalacturonide 
mixture was assessed in tomato 
plants protected against heavy 
metal stress and it was found that 
pre-soaked tomato seeds with 
Pm enabled to reduce its effect 
on seedlings growing in a copper-
poisoned substrate, reaching 
similar growth values to the control 
grown in a non-metal substrate 
(111).

INCA’s GBP has developed 
me thodo log ies  t o  p repa re 
chitosan compounds with different 
physic-chemical characteristics. 
Thus, biological potentialities of 
partially hydrolyzed chitosan were 
studied in polymer and chitosan 
oligosaccharides, differing in their 
biological action, depending on 
the molecular mass and degree 
of acetylation of amino group. 
These compounds have been 
investigated as resistance inducers 
against pathogens in crops as 
tobacco, tomato, soybean and rice, 
as well as inhibitors of principal 
crop pathogensD, E (16, 73, 74, 
112, 113, 114). On the other hand, 
their potentialities to increase 

crop growth and yields were also 
demonstrated in tobacco, tomato, 
corn and cucumberB (16, 115, 116).

Considering INCA’s GBP’s 
results, a chitosan formula known 
as QuitoMax (requested to CIPO) 
was developed, which is not yet 
registered as a liquid byproduct, 
but it is still being validated in 
the field through extensions and 
controls in different provinces 
of Cuba. In this sense, during 
2013-2014 seasons, hundreds of 
hectares of potatoes and beans 
were extended in Mayabeque 
province whereas tens hectares of 
tobacco and tomato were extended 
in Granma province.

Studies performed when 
validating QuitoMax support the 
preparation of chitin and chitosan 
polymers from exoskeletons of 
Cuban lobster, which constitutes 
a polluting waste from fishing 
industry, in order to be applied on a 
greater scale in agriculture. Among 
the advantages for its use are: they 
are biodegradable and non-toxic 
compounds once they are released 
into the environment and can be 
obtained through non-polluting 

methods from domestic raw 
materials that constitute wastes 
(16).  Also, i ts ant imicrobial 
action against pathogens and 
compatibility, even its synergistic 
action with several biological 
controls should be added; its 
activation of induced resistance 
against further pathogen attacks, 
when previously applied to crops 
and its effect for promoting growth, 
vegetative development and yieldB 
(16, 70, 73).

The latest results of GBP 
show increased growth and 
yields ranging from 10 to 60% 
above the controls, depending 
on the product (Pectimorf or 
QuitoMax) evaluated, different 
forms of applications tested 
in the crop and the location 
studiedA, B, C. These promising 
results, some within extension 
phase, have been proved in 
c rops  as  tobacco ,  tomato , 
potato, corn, rice, cucumber, 
soybean and beans.  In the 
latter two crops, a synergistic 
effect of both products was 
separately shown with biological 
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nitrogen-fixing microorganisms 
used as biofertilizers in such 
cropsC (108).

The group has also designed 
and developed a new concept 
of biofertilizers for biological N 
fixation, based on the production 
o f  b io log i ca l  p repa ra t i ons 
with rhizobia and enriched by 
nodulation factors, synthesized 
oligosaccharins and excreted by 
these symbiont microorganisms of 
legumes (117, 118). By exploiting 
a greater presence of these 
macromolecules in such biological 
preparations, an added value 
was reached, that goes beyond a 
single bacterial biomass increase 
to propose a larger number of 
structures inducing the early 
events in nodule formation, where 
atmospheric nitrogen will be further 
fixed.

C o m p a r i n g  t r a d i t i o n a l 
biofertilizers for soybean to that 
enriched by nodulation factors 
(commercially known as Azofert) 
proved the advantages of the 
second one in root  nodule 
formation and increased crop 
growth and yield (119). Other 
results show that the presence of 
these oligosaccharins in biological 
preparations causes greater 
soybean protection against biotic 
and abiotic stresses (120, 121).

The latest researches and 
validations of GBP conducted on a 
field scale glimpses, in promising 
bean and soybean results, a 
synerg is t i c  e f fec t  be tween 
exogenous and endogenous 
oligosaccharins with microbial 
inoculants, which allow considering 
the use of oligogalacturonides 
and chitosans for the synergistic 
or additive potentiation of such 
biofertilizer in the symbiotic process 
and growth of legumes.

CONCLUSIONS

♦♦ Oligosaccharins are natural 
not toxic and biodegradable 
compounds,  wi th var ious 
biological effects on plants 
and microorganisms that 
make it attractive for its use 
in sustainable and intensive 
a g r i c u l t u r e ,  r e p l a c i n g 
agrochemicals  to  protect 
plants against diseases and 
substituting growth regulators.

♦♦ Although they are structures that 
form part of cell walls from plants 
and microorganisms, there are 
other commercial or industrial 
waste sources, allowing a 
cheaper production, which can 
be performed by chemical, 
physical and enzymatic methods 
which are not expensive.

♦♦ Recent results from GBP, either 
when developing products 
based on oligosaccharins or 
by applying and extending it to 
production scale, demonstrate 
the potential introduction of 
some of these products to 
benefit Cuban and international 
agriculture, such as in vitro 
culture hormone substitutes, 
protection alternatives against 
stress and crop growth and yield 
regulators.
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