REVISIÓN BIBLIOGRÁFICA
Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias
Biosynthesis of indole-3-acetic acid and plant growth promoting by bacteria
Paulina Vega-Celedón,I Hayron Canchignia Martínez, I, II Myriam González,I Michael SeegerI
IInstituto
de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt”,
INIFAT. Cuba.
IIUniversidad de La Habana. Cuba.
RESUMEN
La hormona vegetal ácido indol-3-acético (AIA) es la principal auxina en las plantas. El AIA controla diversos procesos fisiológicos como la elongación y división celular, la diferenciación de tejidos y las respuestas a la luz y la gravedad. La concentración de AIA se encuentra regulada en las plantas. Se ha descrito que las bacterias pueden modular los niveles de AIA. Las rutas biosintéticas de AIA más importantes y ampliamente distribuidas en bacterias son las vías anabólicas de indol-3-piruvato (IPA) y de indol-3-acetamida (IAM). Estas rutas metabólicas son dependientes del precursor triptófano. La vía IPA ha sido descrita principalmente en bacterias promotoras del crecimiento (PGPB), mientras que la vía IAM está presente en bacterias fitopatógenas. Las PGPB estimulan el crecimiento de las plantas mediante diversos mecanismos, que incluyen la producción de fitohormonas. Diversos estudios sobre PGPB que poseen la capacidad de producir AIA demuestran que esta fitohormona juega un rol determinante en la promoción del crecimiento vegetal.
Palabras clave: ácido indolacético, auxina, bacteria, fitohormona, planta, triptófano.
ABSTRACT
The plant hormone
indole-3-acetic acid (IAA) is the main auxin in plants. IAA controls several
physiological processes such as cell elongation and division, tissue differentiation
and responses to light and gravity. IAA concentration is regulated in plants.
Interestingly, bacteria can modulate IAA levels. The most widely distributed
biosynthetic IAA routes in bacteria are indole-3-pyruvate (IPA) and indole-3-acetamide
(IAM) anabolic pathways. These metabolic pathways use tryptophan as precursor.
IPA pathway has been described mainly in plant growth-promoting bacteria (PGPB),
whereas the IAM pathway is present in phytopathogenic bacteria. PGPB stimulate
plant growth through various mechanisms including the production of plant hormones.
Studies on PGPB that are capable to produce IAA indicate that this phytohormone
plays a crucial role for promoting plant growth.
Key words: indole acetic acid, auxin, bacteria, phytohormone, plant, tryptophan.
INTRODUCCIÓN
Hormonas vegetales
CONCLUSIONES
AGRADECIMIENTOS
Los autores agradecen el soporte financiero otorgado por las becas doctorales
CONICYT y RIABIN (PVC, HCM), FONDECYT (1110992 & 1151174) (http://www.fondecyt.cl)
(MS), Universidad Técnica Federico Santa María (131109, 131342
& 131562) (http://www.usm.cl)
(MS, MG) y Center for Nanotechnology and Systems Biology (http://www.usm.cl)
(MS).
Nota al pie
AVega-Celedón, P.; Canchignia, H.; González, M. y Seeger, M. ‘‘Metabolism of indole-3-acetic acid in Burkholderia xenovorans LB400 and its effect on Vitis vinifera growth’’. En: XXI Congreso Latinoamericano de Microbiología, Santos, Brasil, 2012.
BIBLIOGRAFÍA
1. Darwin, C.
The Power of Movement in Plants. edit. HardPress Publishing, 29 de
enero de 2010, 352 p., ISBN 978-1-4076-3307-7.
2. Press, C. M.; Wilson, M.; Tuzun, S. y Kloepper, J. W. ‘‘Salicylic Acid Produced
by Serratia marcescens 90-166 Is Not the Primary Determinant of Induced Systemic
Resistance in Cucumber or Tobacco’’. Molecular Plant-Microbe Interactions,
vol. 10, no. 6, 1 de agosto de 1997, pp. 761-768, ISSN 0894-0282, DOI 10.1094/MPMI.1997.10.6.761.
3. Weingart, H. y Volksch, B. ‘‘Ethylene Production by Pseudomonas syringae
Pathovars In Vitro and In Planta.’’. Applied and Environmental
Microbiology, vol. 63, no. 1, 1 de enero de 1997, pp. 156-161, ISSN 0099-2240,
1098-5336, PMID: 16535480.
4. Bottini, R.; Cassán, F. y Piccoli, P. ‘‘Gibberellin production by
bacteria and its involvement in plant growth promotion and yield increase’’.
Applied Microbiology and Biotechnology, vol. 65, no. 5, 28 de julio
de 2004, pp. 497-503, ISSN 0175-7598, 1432-0614, DOI 10.1007/s00253-004-1696-1.
5. Boiero, L.; Perrig, D.; Masciarelli, O.; Penna, C.; Cassán, F. y Luna,
V. ‘‘Phytohormone production by three strains of Bradyrhizobium japonicum
and possible physiological and technological implications’’. Applied Microbiology
and Biotechnology, vol. 74, no. 4, 29 de noviembre de 2006, pp. 874-880,
ISSN 0175-7598, 1432-0614, DOI 10.1007/s00253-006-0731-9.
6. Frébort, I.; Kowalska, M.; Hluska, T.; Frébortová, J.
y Galuszka, P. ‘‘Evolution of cytokinin biosynthesis and degradation’’. Journal
of Experimental Botany, vol. 62, no. 8, 2011, pp. 2431–2452, ISSN 1460-2431.
7. Spaepen, S. y Vanderleyden, J. ‘‘Auxin and Plant-Microbe Interactions’’.
Cold Spring Harbor Perspectives in Biology, vol. 3, no. 4, 4 de enero
de 2011, p. a001438, ISSN 1943-0264, DOI 10.1101/cshperspect.a001438, PMID:
21084388.
8. Gray, W. M. ‘‘Hormonal Regulation of Plant Growth and Development’’. PLoS
Biology, vol. 2, no. 9, 14 de septiembre de 2004, p. 311, ISSN 1544-9173,
1545-7885, DOI 10.1371/journal.pbio.0020311.
9. Santner, A.; Calderon-Villalobos, L. I. A. y Estelle, M. ‘‘Plant hormones
are versatile chemical regulators of plant growth’’. Nature chemical biology,
vol. 5, no. 5, 2009, pp. 301–307, ISSN 1552-4450, 1552-4469.
10. Rivas, S. V. M. y Plasencia, J. ‘‘Salicylic acid beyond defence: its role
in plant growth and development’’. Journal of Experimental Botany,
vol. 62, no. 10, 2011, pp. 3321-3338, ISSN 0022-0957, 1460-2431.
11. Zhao, Y. ‘‘Auxin biosynthesis and its role in plant development’’. Annual
Review of Plant Biology, vol. 61, 2010, p. 49, ISSN 15452123, 15435008.
12. Wisniewska, J.; Xu, J.; Seifertová, D.; Brewer, P. B.; Ružicka, K.;
Blilou, I.; Rouquié, D.; Benková, E.; Scheres, B. y Friml, J.
‘‘Polar PIN localization directs auxin flow in plants’’. Science, vol.
312, no. 5775, 2006, pp. 883–883, ISSN 0036-8075, 1095-9203.
13. Simon, S. y Petrášek, J. ‘‘Why plants need more than one type of
auxin’’. Plant Science, vol. 180, no. 3, marzo de 2011, pp. 454-460,
ISSN 0168-9452, DOI 10.1016/j.plantsci.2010.12.007.
14. Bonner, J. y Bandurski, R. S. ‘‘Studies of the Physiology, Pharmacology,
and Biochemistry of the Auxins’’. Annual Review of Plant Physiology,
vol. 3, no. 1, 1 de junio de 1952, pp. 59-86, ISSN 0066-4294, DOI 10.1146/annurev.pp.03.060152.000423.
15. Mashiguchi, K.; Tanaka, K.; Sakai, T.; Sugawara, S.; Kawaide, H.; Natsume,
M.; Hanada, A.; Yaeno, T.; Shirasu, K. y Yao, H. ‘‘The main auxin biosynthesis
pathway in Arabidopsis’’. Proceedings of the National Academy of Sciences,
vol. 108, no. 45, 2011, pp. 18512-18517, ISSN 1091-6490.
16. Grossmann, K. ‘‘Mediation of Herbicide Effects by Hormone Interactions’’.
Journal of Plant Growth Regulation, vol. 22, no. 1, 21 de agosto de
2003, pp. 109-122, ISSN 0721-7595, 1435-8107, DOI 10.1007/s00344-003-0020-0.
17. Grossmann, K. ‘‘Auxin herbicide action: lifting the veil step by step’’.
Plant Signaling & Behavior, vol. 2, no. 5, 2007, pp. 421–423, ISSN
1559-2316, 1559-2324, DOI 10.4161/psb.2.5.4417.
18. Leveau, J. H. J. y Lindow, S. E. ‘‘Utilization of the Plant Hormone Indole-3-Acetic
Acid for Growth by Pseudomonas putida Strain 1290’’. Applied and
Environmental Microbiology, vol. 71, no. 5, 5 de enero de 2005, pp. 2365-2371,
ISSN 0099-2240, 1098-5336, DOI 10.1128/AEM.71.5.2365-2371.2005, PMID: 15870323.
19. Davies, P. J. Plant hormones: physiology, biochemistry and molecular
biology [en línea]. edit. Springer Netherlands, Dordrecht, 1995,
ISBN 978-0-7923-2985-5, [Consultado: 25 de enero de 2016], Disponible en:
<http://link.springer.com/10.1007/978-94-011-0473-9>.
20. Lee, S.; Flores-Encarnación, M.; Contreras-Zentella, M.; Garcia-Flores,
L.; Escamilla, J. E. y Kennedy, C. ‘‘Indole-3-Acetic Acid Biosynthesis Is Deficient
in Gluconacetobacter diazotrophicus Strains with Mutations in Cytochrome c Biogenesis
Genes’’. Journal of Bacteriology, vol. 186, no. 16, 15 de agosto de
2004, pp. 5384-5391, ISSN 0021-9193, 1098-5530, DOI 10.1128/JB.186.16.5384-5391.2004,
PMID: 15292139.
21. Patten, C. L. y Glick, B. R. ‘‘Bacterial biosynthesis of indole-3-acetic
acid’’. Canadian Journal of Microbiology, vol. 42, no. 3, 1 de marzo
de 1996, pp. 207-220, ISSN 0008-4166, DOI 10.1139/m96-032.
22. Patten, C. L. y Glick, B. R. ‘‘Role of Pseudomonas putida Indoleacetic
Acid in Development of the Host Plant Root System’’. Applied and Environmental
Microbiology, vol. 68, no. 8, 8 de enero de 2002, pp. 3795-3801, ISSN 0099-2240,
1098-5336, DOI 10.1128/AEM.68.8.3795-3801.2002, PMID: 12147474.
23. Kravchenko, L. V.; Makarova, N. M.; Azarova, T. S.; Provorov, N. A. y Tikhonovich,
I. A. ‘‘Isolation and Phenotypic Characterization of Plant Growth–Promoting
Rhizobacteria with High Antiphytopathogenic Activity and Root-Colonizing Ability’’.
Microbiology, vol. 71, no. 4, julio de 2002, pp. 444-448, ISSN 0026-2617,
1608-3237, DOI 10.1023/A:1019849711782.
24. Kravchenko, L. V.; Azarova, T. S.; Makarova, N. M. y Tikhonovich, I. A.
‘‘The Effect of Tryptophan Present in Plant Root Exudates on the Phytostimulating
Activity of Rhizobacteria’’. Microbiology, vol. 73, no. 2, marzo de
2004, pp. 156-158, ISSN 0026-2617, 1608-3237, DOI10.1023/B:MICI. 0000023982.76684.9d.
25. Kamilova, F.; Kravchenko, L. V.; Shaposhnikov, A. I.; Azarova, T.; Makarova,
N. y Lugtenberg, B. ‘‘Organic Acids, Sugars, and l-Tryptophane in Exudates of
Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere
Bacteria’’. Molecular Plant-Microbe Interactions, vol. 19, no. 3, 1
de marzo de 2006, pp. 250-256, ISSN 0894-0282, DOI 10.1094/MPMI-19-0250.
26. Idris, E. E.; Iglesias, D. J.; Talon, M. y Borriss, R. ‘‘Tryptophan-Dependent
Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion
by Bacillus amyloliquefaciens FZB42’’. Molecular Plant-Microbe
Interactions, vol. 20, no. 6, 30 de mayo de 2007, pp. 619-626, ISSN 0894-0282,
DOI 10.1094/MPMI-20-6-0619.
27. Spaepen, S.; Vanderleyden, J. y Remans, R. ‘‘Indole-3-acetic acid in microbial
and microorganism-plant signaling’’. FEMS Microbiology Reviews, vol.
31, no. 4, 2007, pp. 425–448, ISSN 1574-6976.
28. Jameson, P. E. ‘‘Cytokinins and auxins in plant-pathogen interactions –
An overview’’. Plant Growth Regulation, vol. 32, no. 2-3, noviembre
de 2000, pp. 369-380, ISSN 0167-6903, 1573-5087, DOI 10.1023/A:1010733617543.
29. Mole, B. M.; Baltrus, D. A.; Dangl, J. L. y Grant, S. R. ‘‘Global virulence
regulation networks in phytopathogenic bacteria’’. Trends in Microbiology,
vol. 15, no. 8, agosto de 2007, pp. 363-371, ISSN 0966-842X, DOI 10.1016/j.tim.2007.06.005.
30. Persello-Cartieaux, F.; Nussaume, L. y Robaglia, C. ‘‘Tales from the underground:
molecular’’. Plant, Cell & Environment, vol. 26, no. 2, 1 de febrero
de 2003, pp. 189-199,
ISSN 1365-3040, DOI 10.1046/j.13653040.2003.00956.x.
31. Tsavkelova, E. A.; Cherdyntseva, T. A.; Botina, S. G. y Netrusov, A. I.
‘‘Bacteria associated with orchid roots and microbial production of auxin’’.
Microbiological Research, vol. 162, no. 1, 29 de enero de 2007, pp.
69-76, ISSN 0944-5013, DOI 10.1016/j.micres.2006.07.014.
32. Phi, Q.-T.; Park, Y.-M.; Ryu, C.-M.; Park, S.-H. y Ghim, S.-Y. ‘‘Functional
identification and expression of indole-3-pyruvate decarboxylase from Paenibacillus
polymyxa E681’’. Journal of Microbiology and Biotechnology, vol.
18, 2008, pp. 1235–1244, ISSN 1738-8872, 1017-7825.
33. Glickmann, E.; Gardan, L.; Jacquet, S.; Hussain, S.; Elasri, M.; Petit,
A. y Dessaux, Y. ‘‘Auxin Production Is a Common Feature of Most Pathovars of
Pseudomonas syringae’’. Molecular Plant-Microbe Interactions,
vol. 11, no. 2, 1 de febrero de 1998, pp. 156-162, ISSN 0894-0282, DOI 10.1094MPMI.1998.11.2.156.
34. Yang, S.; Zhang, Q.; Guo, J.; Charkowski, A. O.; Glick, B. R.; Ibekwe, A.
M.; Cooksey, D. A. y Yang, C.-H. ‘‘Global Effect of Indole-3-Acetic Acid Biosynthesis
on Multiple Virulence Factors of Erwinia chrysanthemi 3937’’. Applied
and Environmental Microbiology, vol. 73, no. 4, 15 de febrero de 2007,
pp. 1079-1088, ISSN 0099-2240, 1098-5336,
DOI 10.1128/AEM.01770-06, PMID: 17189441.
35. Lugtenberg, B. y Kamilova, F. ‘‘Plant-Growth-Promoting Rhizobacteria’’.
Annual Review of Microbiology, vol. 63, no. 1, 2009, pp. 541-556, ISSN
0066-4227, 1545-3251, DOI 10.1146/annurev.micro.62.081307.162918, PMID: 19575558.
36. Babalola, O. O. ‘‘Beneficial bacteria of agricultural importance’’. Biotechnology
Letters, vol. 32, no. 11, 16 de julio de 2010, pp. 1559-1570, ISSN 0141-5492,
1573-6776, DOI 10.1007/s10529-010-0347-0.
37. Adesemoye, A. O.; Torbert, H. A. y Kloepper, J. W. ‘‘Plant Growth-Promoting
Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers’’. Microbial
Ecology, vol. 58, no. 4, 23 de mayo de 2009, pp. 921-929, ISSN 0095-3628,
1432-184X, DOI 10.1007/s00248-009-9531-y.
38. Castro-Sowinski, S.; Herschkovitz, Y.; Okon, Y. y Jurkevitch, E. ‘‘Effects
of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere
microorganisms’’. FEMS Microbiology Letters, vol. 276, no. 1, 2007,
pp. 1–11, ISSN 0378-1097, 1574-6968.
39. Ali, B.; Sabri, A. N.; Ljung, K. y Hasnain, S. ‘‘Quantification of indole-3-acetic
acid from plant associated Bacillus spp. and their phytostimulatory
effect on Vigna radiata (L.)’’. World Journal of Microbiology and
Biotechnology, vol. 25, no. 3, 16 de diciembre de 2008, pp. 519-526, ISSN
0959-3993, 1573-0972, DOI 10.1007/s11274-008-9918-9.
40. Malhotra, M. y Srivastava, S. ‘‘An ipdC gene knock-out of Azospirillum
brasilense strain SM and its implications on indole-3-acetic acid biosynthesis
and plant growth promotion’’. Antonie van Leeuwenhoek, vol. 93, no.
4, 20 de octubre de 2007, pp. 425-433, ISSN 0003-6072, 1572-9699, DOI 10.1007/s10482-007-9207-x.
41. Vega-Celedón, P.; Canchignia, H.; González, M. y Seeger, M.
‘‘Biosíntesis de ácido indol-3-acético y promoción
del crecimiento de plantas por la bacteria Burkholderia xenovorans
LB400’’. En: X Congreso Internacional de Biotecnología Vegetal,
edit. Centro de Bioplantas. Universidad de Ciego de Ávila, Ciego de Ávila,
Cuba, 2015.
42. Spaepen, S.; Bossuyt, S.; Engelen, K.; Marchal, K. y Vanderleyden, J. ‘‘Phenotypical
and molecular responses of Arabidopsis thaliana roots as a result of
inoculation with the auxin-producing bacterium Azospirillum brasilense’’.
New Phytologist, vol. 201, no. 3, 2014, pp. 850–861, ISSN 1469-8137.
43. Sevilla, M.; Burris, R. H.; Gunapala, N. y Kennedy, C. ‘‘Comparison of Benefit
to Sugarcane Plant Growth and 15N2 Incorporation Following
Inoculation of Sterile Plants with Acetobacter diazotrophicus Wild-Type
and Nif¯ Mutant Strains’’. Molecular Plant-Microbe Interactions,
vol. 14, no. 3, 1 de marzo de 2001, pp. 358-366, ISSN 0894-0282,
DOI 10.1094MPMI.2001.14.3.358.
44. Poupin, M. J.; Timmermann, T.; Vega, A.; Zuñiga, A. y González,
B. ‘‘Effects of the Plant Growth-Promoting Bacterium Burkholderia phytofirmans
PsJN throughout the Life Cycle of Arabidopsis thaliana’’. PLoS
ONE, vol. 8, no. 7, 15 de julio de 2013, p. 69435, ISSN 1932-6203, DOI
10.1371/journal.pone.0069435.
45. Singh, R. K.; Malik, N. y Singh, S. ‘‘Improved Nutrient Use Efficiency Increases
Plant Growth of Rice with the Use of IAA-Overproducing Strains of Endophytic
Burkholderia cepacia Strain RRE25’’. Microbial Ecology, vol.
66, no. 2, 25 de abril de 2013, pp. 375-384, ISSN 0095-3628, 1432-184X, DOI
10.1007/s00248-013-0231-2.
46. Apine, O. A. y Jadhav, J. P. ‘‘Optimization of medium for indole-3-acetic
acid production using Pantoea agglomerans strain PVM’’. Journal
of Applied Microbiology, vol. 110, no. 5, 2011, pp. 1235–1244, ISSN 1365-2672.
47. Idris, E. E.; Bochow, H.; Ross, H. y Borriss, R. ‘‘Use of Bacillus subtilis
as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared
from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42,
FZB45 and Bacillus subtilis FZB37’’. Journal of Plant Diseases
and Protection, vol. 111, no. 6, 2004, pp. 583–597, ISSN 0340-8159.
48. Ryu, C.; Kim, J.; Choi, O.; Park, S.; Park, S. y Park, C. ‘‘Nature of a
root-associated Paenibacillus polymyxa from field-grown winter barley in Korea’’.
Journal of Microbiology and Biotechnology, vol. 15, no. 5, 2005, p.
984, ISSN 1017-7825.
Recibido: 15 de
mayo de 2015
Aceptado: 20 de enero de 2016
Paulina Vega-Celedón, Universidad Técnica Federico Santa María, Valparaíso, Chile. Email: michael.seeger@usm.cl