Translate PaperArtículo original

Correlación canónica entre caracteres vegetativos y del fruto en familias de guayabo (Psidium guajava L.)

  [*] Autor para correspondencia. lene@fbio.uh.cu


RESUMEN

El guayabo es un cultivo de gran importancia económica en las regiones tropicales y subtropicales del mundo. El conocimiento de las asociaciones entre caracteres de importancia agronómica es de gran utilidad en los programas de mejoramiento y selección de cultivares. En el presente estudio se utilizó un análisis de correlación canónica, para estimar la relación existente entre caracteres vegetativos y del fruto, evaluados en tres familias de hermanos completos de guayabo. Las familias fueron obtenidas a partir de cruzamientos intraespecíficos controlados, realizados en el Instituto de Investigaciones en Fruticultura Tropical. Se observaron correlaciones genéticas positivas y significativas entre la mayoría de los caracteres del fruto. Entre caracteres vegetativos y del fruto, se detectaron pocas asociaciones. Sólo se detectó un valor del coeficiente de correlación canónica significativo en el primer par de variables canónicas. El análisis indicó que, entre los caracteres vegetativos, el ancho de la hoja fue el que más contribuyó a la explicación de las variables canónicas en las familias de hermanos completos de guayabo. En los caracteres del fruto, el número de semillas, el ancho del fruto y el espesor interno de la pulpa, fueron los de mayor contribución a las variables canónicas estimadas. Con el empleo del análisis de correlación canónica se pudo determinar que existe baja asociación entre el grupo de caracteres vegetativos y el del fruto. Por esta razón, no se debe emplear alguno de estos grupos de caracteres para predecir el comportamiento del otro, en estas familias de guayabo.

Palabras clave:
fitomejoramiento; selección; correlación genética; análisis multivariante.

INTRODUCCIÓN

El guayabo (Psidium guajava L.), es uno de los frutales más conocidos, que se cultiva ampliamente en más de 60 países, de las regiones tropicales y subtropicales del mundo 1

. Se incluye en el género Psidium que agrupa alrededor de 150 especies de árboles y arbustos, de las cuales sólo 20 producen frutos comestibles 2.

La demanda y expansión del cultivo del guayabo se ha desarrollado por la necesidad de obtener cultivares, con frutos de buena calidad y larga duración, resistentes a enfermedades y con alto contenido de nutrientes 3. La selección de genotipos promisorios y la propuesta de nuevos cultivares requiere de la evaluación de caracteres de interés agrícola, que presentan herencia cuantitativa y tienen un efecto ambiental negativo. Muchos de estos caracteres están asociados con otros, por lo que la selección de un carácter puede afectar a otros de manera positiva o negativa 4. Por esta razón, es importante determinar las correlaciones entre caracteres de interés para el mejoramiento, las cuales pueden originarse por ligamiento de genes o pleiotropía 5.

Cuando los caracteres están correlacionados, el criterio de selección que considera una sola variable, puede no generar una ganancia genética satisfactoria para todos los caracteres evaluados 5. Los análisis de correlación son factibles para determinar las relaciones mutuas entre varios caracteres y sugieren la ventaja de un esquema de selección para más de un carácter a la vez 1. Sin embargo, la magnitud y el valor de los coeficientes de correlación no es suficiente para aclarar las relaciones entre los caracteres, debido a que no existe una relación causa-efecto entre ellos 6.

La correlación canónica es un método de análisis multivariado utilizado para examinar la relación entre dos grupos de caracteres 7. Este análisis permite agrupar caracteres de interés, de forma tal que la determinación de las asociaciones entre los grupos posibilite la selección indirecta de caracteres 4, por lo que brinda informaciones valiosas para la selección de ideotipos en programas de mejoramiento 8. En esta técnica, los estimados de correlación se realizan entre combinaciones lineales de los dos grupos de caracteres, denominadas variables canónicas. La correlación entre los correspondientes pares de variables canónicas se define como correlación canónica 9

En agronomía, el análisis canónico se ha utilizado para estimar la asociación entre dos grupos diferentes de caracteres; por ejemplo, entre caracteres morfológicos y bioquímicos; caracteres vegetativos y componentes del rendimiento; caracteres agronómicos y de calidades de las semillas; caracteres fisiológicos y morfológicos, entre otros. Estos estudios se han realizado en diversos cultivos como el pimiento rojo (Capsicum annuum L.) 10, el trigo (Triticum aestivum L.) 8,9,11, el maíz (Zea mays L.) 12,13, la soya (Glycine max L.) 14, pero han sido poco utilizados en los frutales.

En todos los estudios previamente mencionados, el análisis canónico se realizó con los valores fenotípicos de los caracteres. Algunos autores han planteado que resulta más efectivo realizarlo con los valores genéticos predichos 6. Los valores genéticos se pueden predecir por medio de la metodología de los modelos mixtos (REML-BLUP, procedimientos de máxima verosimilitud restringida-mejor lineal insesgado), los cuales proveen inferencias más precisas y exactas 6,15. Estos autores emplearon el análisis de correlación canónica, para determinar la asociación entre caracteres vegetativos y componentes del rendimiento en familias de hermanos completos de guayabo, basados en los valores genéticos predichos.

Basado en los elementos anteriormente expuestos, el presente trabajo tiene como objetivo evaluar la asociación entre caracteres vegetativos y del fruto, en familias de hermanos completos de guayabo, mediante el cálculo de las correlaciones canónicas.

MATERIALES Y MÉTODOS
Material vegetal empleado en los experimentos

El estudio fue desarrollado en la Unidad Científico-Tecnológica de Base (UCTB) de Alquízar, provincia Artemisa, perteneciente al Instituto de Investigaciones en Fruticultura Tropical (IIFT) de Cuba, que se encuentra ubicada en los 22º 47’ de latitud norte y los 82º 31’ de longitud oeste, a 11 m sobre el nivel del mar, sobre un suelo Ferralsol éutrico, con una topografía llana de pendiente cero 16.

Se evaluaron tres familias de hermanos completos de guayabo (Psidium guajava L.), obtenidas a partir de cruzamientos intraespecíficos, realizados mediante polinización controlada en el año 2001. Se utilizaron como progenitores femeninos, tres plantas del cultivar 'Enana Roja Cubana' (‘EEA 18-40’), que se utiliza a escala comercial en el país. Como progenitores masculinos se emplearon los cultivares: 'N6', 'Suprema Roja' y 'Belic L-207'. Estos cultivares fueron seleccionados como progenitores, por presentar gran variabilidad fenotípica y genotípica, detectada al realizar la evaluación del banco de germoplasma del cultivo por medio de marcadores morfológicos y moleculares 17.

Las semillas obtenidas de cada cruzamiento, se sembraron en semilleros y posteriormente se trasplantaron a bolsas individuales de 26 x 46 cm que contenían suelo Ferralsol éutrico y materia orgánica (cachaza) a la relación 3:1. Cuando las plantas tenían entre 50 y 60 cm de altura se plantaron en áreas de la UCTB, siguiendo un marco de plantación de 6 x 5 m. Cada una de las plantas obtenidas puede ser considerada un genotipo diferente, debido a que se obtuvieron de semillas, por lo que hay solo una réplica por genotipo. Las tres familias se plantaron de forma adyacente una a la otra, formando un bloque compacto en el mismo lote, junto a los progenitores.

Las plantas se mantuvieron con riego localizado, empleando la técnica de riego por goteo con emisores marca RAM de 2,3 L h-1, espaciados a 0,65 m dentro de un lateral de 20 mm de diámetro. El riego se aplicó con dosis fijas e intervalos fijos (días alternos) y fue suspendido durante los eventos de fuertes lluvias. Las labores culturales, la fertilización y el control fitosanitario fueron realizados según el Instructivo Técnico del cultivo 18.

Evaluación de caracteres cuantitativos

En las progenies resultantes de los tres cruzamientos y sus progenitores, se evaluaron diez caracteres cuantitativos de los propuestos como descriptores del guayabo 19,20. Las mediciones se realizaron teniendo en cuenta las recomendaciones del descriptor

del cultivo, publicado por la UPOV 19. Los caracteres evaluados fueron: largo de la hoja (mm); ancho de la hoja (mm); altura de la planta (m); masa del fruto (g); largo del fruto (mm); ancho del fruto (mm); espesor externo de la pulpa (mm); espesor interno de la pulpa (mm); número de semillas por fruto y masa total de las semillas por fruto (g).

Las plantas se comenzaron a evaluar a los cinco años de edad, a partir del año 2006 y se realizaron mediciones durante tres años consecutivos (2006-2008), en cada uno de los genotipos de las tres familias. Los caracteres vegetativos fueron evaluados en el período marzo-abril y los caracteres del fruto en el período agosto-septiembre, que es el pico de cosecha de verano. Los frutos se cosecharon en su madurez fisiológica y fueron evaluados en completa maduración, dos o tres días después de cosechados. Para la medición de estos caracteres se utilizaron balanzas técnicas, reglas milimetradas y pie de rey.

Evaluación de la asociación entre caracteres vegetativos y del fruto, con el empleo del análisis de correlación canónica

Con el objetivo de identificar y cuantificar la asociación lineal entre el grupo de caracteres vegetativos y el grupo de caracteres del fruto, se desarrolló un análisis de correlación canónica, el cual se enfoca en la correlación entre combinaciones lineales pertenecientes a los grupos de caracteres. Este análisis se realizó con el empleo de los valores genéticos predichos, a partir de los mejores predictores lineales insesgados (BLUP) que se obtuvieron por el método de máxima verosimilitud restringida (REML) con el empleo del procedimiento MIXED. La ecuación del modelo mixto empleado fue la siguiente:

donde:

  • y es el vector de observaciones.

  • r es el vector de mediciones que incluye la media general y se considera de efectos fijos.

  • g es el vector de efectos genotípicos individuales considerados aleatorios.

  • a es el vector de afectos ambientales (años de evaluación) considerado de efectos fijos.

  • e es el vector de errores o residuales (aleatorios).

  • X, Z y W son las matrices de incidencia conocidas, asociadas con los vectores r, g y a, respectivamente.

Previo al cálculo de la correlación canónica, se evaluó el ajuste de los valores de cada uno de los caracteres a la distribución normal, para verificar el cumplimiento de la premisa de normalidad multivariada que tiene el análisis 21,22, con el empleo de las pruebas de bondad de ajuste de Kolmogorov-Smirnov, Shapiro Wilk, Cramer-von Mises y Anderson-Darling, que brinda el procedimiento UNIVARIATE23.

Para realizar el análisis de correlación canónica se utilizó el procedimiento CANCORR, el cual determinó, primeramente, las correlaciones genéticas existentes entre todos los caracteres evaluados, a partir de los valores genéticos estimados con el procedimiento BLUP15. Posteriormente, se identificó la asociación entre el grupo de caracteres vegetativos (altura de la planta, largo y ancho del fruto) y el grupo de caracteres del fruto (masa, largo y ancho del fruto, espesor externo e interno de la pulpa, número de semillas y masa total de semillas por fruto), con el cálculo de la correlación canónica. Se determinaron tres funciones o variables canónicas. El procedimiento utiliza el estadístico F para probar una serie de hipótesis nulas que plantean que cada correlación canónica es igual a cero en la población 21.

. También fueron determinados, para cada par de variables canónicas (Ui,Vi), los valores de las correlaciones canónicas, la varianza promedio explicada, los valores de redundancia y los coeficientes canónicos.

Todos los análisis estadísticos se desarrollaron con el empleo del programa SAS, versión 9.3 24.

RESULTADOS Y DISCUSIÓN

Con la realización de los procedimientos MIXED se obtuvieron los BLUP, que constituyen los predictores de los valores genéticos (Breeding value). Estos valores genéticos fueron utilizados para determinar la asociación entre caracteres vegetativos (altura de la planta, largo y ancho de la hoja) y del fruto (espesor externo e interno de la pulpa, número y masa total de las semillas por fruto, masa, largo y ancho del fruto), a partir del análisis de correlación canónica. Este análisis es un caso especial de modelo lineal general que está basado en la matriz de correlación de todos los caracteres evaluados 25. Su objetivo es buscar las relaciones que puedan existir entre dos grupos de caracteres y la validez de las mismas 6.

Se observó, que al tener en cuenta todos valores obtenidos en las tres familias para cada carácter, se logró el ajuste a la distribución normal para cada uno de ellos.

En la Tabla 1, se muestran los valores de los coeficientes de correlación entre los diez caracteres evaluados, con su significación estadística. La mayoría de los caracteres del fruto mostraron correlaciones significativas y positivas entre ellos, con excepción del largo del fruto, con el espesor interno de la pulpa y el número de semillas y el espesor externo de la pulpa con el número de semillas, en los cuales se obtuvieron coeficientes negativos. Entre los caracteres vegetativos se observó sólo una correlación positiva y significativa entre el largo y el ancho de la hoja. Este último carácter está correlacionado positivamente con todos los del fruto, con excepción del largo. La altura de la planta no se asoció con ninguno de los caracteres evaluados en las tres familias de guayabo.

Las mayores correlaciones se observaron entre la masa y el ancho del fruto (0,8866), la masa del fruto y el espesor externo de la pulpa (0,7445) y el número y la masa total de las semillas por fruto (0,7049) (Tabla 1). Los altos valores de los coeficientes de correlación pueden ser resultado del efecto del pleiotropismo, en el cual un mismo gen afecta la expresión de más de un carácter 26. Esta información es útil para el fitomejoramiento, porque favorece la selección simultánea de dos o más caracteres, al seleccionar uno solo de ellos.

Resultados similares fueron obtenidos al estimar las correlaciones genéticas en las mismas familias de guayabo, pero por el método de covarianza progenie-progenitor 27 en el cual se deben calcular las covarianzas progenie-progenitor de cada carácter y las covarianzas cruzadas entre dos caracteres. En otro estudio realizado se estimaron las correlaciones genéticas entre caracteres asociados al rendimiento en líneas de maíz (Zea mays L.) 28, por medio de un método manual que utiliza la fórmula propuesta por otros autores 26 y por la máxima verosimilitud restringida, a través de un procedimiento MIXED, en el cual se especificó la opción GCORR para que se calcularan las correlaciones genéticas. Estos autores también encontraron resultados equivalentes por los dos métodos, al comparar las correlaciones genéticas obtenidas por ambos métodos, con el empleo de una prueba t de Student de muestras pareadas y no encontrar diferencias significativas. Este resultado les permitió llegar a la conclusión de que las correlaciones genéticas pueden ser estimadas por medio del PROC MIXED que es más simple y rápido de hacer 28.

En una evaluación de caracteres del fruto y componentes del rendimiento en familias de hermanos completos de guayabo, se obtuvieron bajos valores de los coeficientes de correlación genética 5. Estos resultados son similares a los obtenidos en el presente trabajo en los coeficientes calculados entre caracteres vegetativos y del fruto. Los autores plantearon, a partir de los resultados, que la selección de esos caracteres se va a realizar sin tener una respuesta correlacionada.

Es posible obtener ganancias con respuestas correlacionadas en los caracteres que muestran asociaciones positivas y significativas. La existencia de asociación genética positiva entre dos caracteres implica que los cambios en uno de ellos pueden provocar alteraciones en el otro 4. Como todas las correlaciones fueron positivas con la masa del fruto, el ancho del fruto y la masa total de las semillas, la selección simultánea puede promover ganancia en la masa de los frutos y la masa de las semillas, de forma más eficiente 29, pues según lo planteado, cuando se seleccionan los caracteres que contribuyen positivamente con un carácter de interés, se hace un uso más efectivo de la correlación 26.

Los estudios de correlación entre diferentes caracteres de la planta y del fruto, en genotipos de guayabo, pueden proveer una idea, de cuáles caracteres podrían ser utilizados para la selección de parámetros deseables en futuros programas de mejoramiento del cultivo. Las correlaciones positivas y significativas entre caracteres de interés, son favorables para el mejorador, porque pueden ayudar en el mejoramiento simultáneo de ambos caracteres. Por otra parte, la correlación negativa pudiera solapar la expresión sincronizada de ambos caracteres 30.

El conocimiento de las correlaciones genéticas puede ser muy útil en el mejoramiento, para la selección de caracteres con baja heredabilidad y dificultades en su medición, porque bajo estas condiciones, se puede llevar a cabo la selección indirecta de los mismos; es por ello, que deben ser estimadas las correlaciones genéticas en los programas de mejora 4.

Como se obtuvieron bajos valores de los coeficientes de correlación genética entre caracteres vegetativos y del fruto, no son indicadores importantes unos de los otros, o sea, no se pueden utilizar para realizar la selección de más de un carácter. Además, las correlaciones entre pares de caracteres son más difíciles de explicar simultáneamente 10,21. Por esta razón, se estimaron tres coeficientes de correlación canónica para explicar la interrelación existente entre los dos grupos de caracteres, pues el número de correlaciones canónicas que se necesitan interpretar, es igual al menor número de caracteres en los grupos 21,25, que en este estudio se corresponde con el grupo de las variables vegetativas.

En la Tabla 2 se muestran los resultados obtenidos al realizar el análisis canónico entre los dos grupos de caracteres. Sólo el primer par de variables o funciones canónicas (U1,V1) mostró una correlación canónica significativa (p=0,001) entre los caracteres vegetativos y los del fruto, con relación a la prueba de razón de verosimilitud. En esta primera función canónica, que es la más importante porque explica el mayor porcentaje de la varianza del conjunto de variables e indica la máxima correlación entre los dos grupos de caracteres, se obtuvo un valor del coeficiente de correlación de 0,3282. Este valor representa la mayor correlación posible entre cualquier combinación lineal de los caracteres vegetativos y cualquier combinación lineal de los caracteres del fruto 21 y puede ser interpretado como la correlación simple entre la sumatoria ponderada o combinación lineal de los valores en cada grupo de caracteres, con la ponderación perteneciente a la primera función canónica 25

En otros estudios también se ha obtenido solamente un valor de correlación canónica significativo, en la primera función canónica. Por ejemplo, al relacionar caracteres morfológicos y productivos en familias de medios hermanos de Jatropha curcas L. 31, entre caracteres agronómicos y de calidad fisiológica de la semilla en poblaciones segregantes de soya 14 y al asociar variables morfológicas y de la germinación en semillas de cultivares de trigo 32.

La segunda (U2V2) y la tercera (U3V3) funciones canónicas van a explicar el mayor porcentaje de la varianza que deja la primera función canónica, o sea, la varianza residual o restante de las primeras funciones. Además, las correlaciones canónicas disminuyen a medida que se calculan funciones adicionales; es decir la primera función refleja la mayor correlación entre los dos grupos, la siguiente la segunda correlación y así sucesivamente 21.

La prueba de significación de las funciones canónicas utiliza una aproximación de la prueba F para determinar la significación de la Lambda de Wilks, que es igual a la prueba de razón de verosimilitud 21. Esta prueba se utiliza para evaluar si las variables de un grupo están correlacionadas con las del otro grupo. Para ello se prueba, de manera secuencial, si todas las funciones canónicas son significativas o no 25. Primero se observa las tres funciones canónicas juntas y se evalúa si las tres correlaciones canónicas son cero; si se rechaza la hipótesis nula (p<0,05), se pasa a evaluar la segunda y la tercera correlaciones 21. Para determinar la significación estadística de las otras dos funciones, se elimina la primera función, que es la más significativa y si la segunda prueba es también significativa, se puede proceder sólo con la tercera, para determinar si la función remanente es también significativa 25. Si sólo la primera función canónica es estadísticamente significativa, como en el presente trabajo, es la única que debe ser interpretada.

Aunque las variables canónicas son artificiales, estas pueden ser identificadas en términos de las variables originales. Para ello, se pueden interpretar los coeficientes canónicos estandarizados para cada grupo de caracteres en las tres funciones o variables canónicas (U1V1, U2V2 y U3V3), así como, las correlaciones entre las variables canónicas y las variables originales, las cuales se muestran en las Tablas 3 y 4, respectivamente. Los coeficientes canónicos se estandarizan para permitir su interpretación, porque las variables originales no tienen que tener varianzas homogéneas, ni estar medidas en la misma unidad 21. Las magnitudes de los coeficientes canónicos indican las contribuciones relativas de cada variable en la combinación lineal canónica 25; o sea, los coeficientes indican los efectos de los caracteres vegetativos sobre los del fruto en los genotipos de guayabo.

Al observar los valores obtenidos para los coeficientes estandarizados (Tabla 3), en la primera función que es la única significativa, se puede decir que, si aumentan los valores de ancho de la hoja y altura de la planta, se van a incrementar el ancho del fruto, el espesor externo de la pulpa y el número de semillas y van a disminuir el espesor interno de la pulpa, la masa total de las semillas, la masa y el largo del fruto. Los caracteres que más contribuyeron a la primera variable canónica (V1) entre los del fruto fueron: el ancho del fruto (1,0750) y el número de semillas (0,7803), mientras que el ancho de la hoja (1,2832) fue el de mayor contribución a la primera variable canónica de los vegetativos (U1). Estos tres caracteres mostraron correlaciones genéticas positivas y significativas entre ellos y con la mayoría de los restantes caracteres del fruto (Tabla 1). Los restantes caracteres vegetativos y del fruto tuvieron un menor aporte al primer par de variables canónicas U1,V1.

Las proporciones de varianza extraídas en los dos grupos y los valores de redundancia se muestran en la Tabla 4. Los valores de proporción de varianza extraída y redundancia, indican la magnitud de las correlaciones totales entre los dos grupos de variables, relativa a la varianza de las variables originales. Son diferentes del valor de correlación canónica cuadrada, porque este último estadístico expresa la proporción de la varianza explicada en las variables canónicas 25.

La primera variable canónica extrajo, como promedio, un 38,77 % de la varianza de los caracteres vegetativos y un 29,20 % de los caracteres del fruto, valores que pueden considerarse bajos. Las tres funciones canónicas juntas extrajeron el 100 % de la varianza del grupo de caracteres vegetativos y el 50,59 % de la varianza de los caracteres del fruto. Si se observan los valores de redundancia, con los caracteres del fruto se puede explicar solo el 4,46 % de la varianza en los caracteres vegetativos, basado en la primera función canónica; mientras que con los caracteres vegetativos se explica el 4,40 % de la variabilidad en los caracteres del fruto (Tabla 4).

Los coeficientes de redundancia se utilizan para medir la capacidad predictiva de un conjunto de caracteres respecto al otro 33. Los resultados indican que existe una débil asociación entre los caracteres vegetativos y del fruto, por lo que no se puede predecir el comportamiento de los genotipos de guayabo en los caracteres del fruto, a partir de los valores de los caracteres vegetativos y viceversa. Este resultado confirma el obtenido previamente, al estimar las correlaciones genéticas entre todos los caracteres y obtener bajos valores de los coeficientes de correlación entre caracteres vegetativos y caracteres del fruto.

Se puede concluir entonces, que existe una débil correlación entre los caracteres vegetativos y los caracteres del fruto evaluados en las tres familias de hermanos completos de guayabo, por lo que la selección de determinados caracteres vegetativos no va a implicar que lleve consigo la de los caracteres del fruto y viceversa. Resultados similares fueron obtenidos en progenies de hermanos completos de guayabo en Brasil 6. Estos autores, al utilizar el análisis de correlación canónica, determinaron que los valores del coeficiente de correlación para las funciones canónicas fueron bajos y que existía poca correlación genética entre caracteres vegetativos y componentes del rendimiento.

Los coeficientes canónicos son importantes a considerar en las decisiones que se toman en las etapas de selección de individuos superiores, en los programas de mejora, para caracteres de interés, cuando se consideran dos grupos diferentes de caracteres 6. El conocimiento del grado de asociación, a través de estudios de correlación, puede identificar caracteres que pueden ser usados como criterios de selección indirecta para el rendimiento o como caracteres secundarios, lo cual mejora la eficiencia de los procesos de selección 34. Varias medidas de correlación bivariadas y multivariadas pueden ser utilizadas para determinar las relaciones entre variables; sin embargo, los coeficientes de correlación bivariados pueden fallar en determinar relaciones complejas. Los modelos multivariados pueden ser apropiados para asegurar las relaciones entre un gran número de variables. El análisis de correlación canónica puede ser utilizado para determinar relaciones entre múltiples variables dependientes e independientes; por tanto, es más exitoso para estimar relaciones complejas en las ciencias biológicas 9.

CONCLUSIONES

  • Entre los caracteres del fruto evaluados en las familias de hermanos completos de guayabo, se observó una alta correlación genética.

  • El análisis de correlación canónica empleado detectó una baja asociación entre el grupo de caracteres vegetativos y el grupo de caracteres del fruto, en las tres familias de hermanos completos de guayabo.

BIBLIOGRAFÍA

1 

1. Patel RK, Maiti CS, Deka BC, Vermav VK, Deshmukh NA, Verma MR. Genetic variability, character association and path coefficient study in guava (Psidium guajava L.) for plant growth, floral and yield attributes. International Journal of Bio-resource and Stress Management. 2015;6(4):457-66.

2 

2. Paiva CL. Índices multivariados e BLUP multisafras na seleçao de genótipos de goiabeira. 2017. 99 p.

3 

3. Rawls B, Harris-Shultz K, Dhekney S, Forrester I, Sitther V. Clonal Fidelity of Micropropagated (Psidium guajava L.) Plants Using Microsatellite Markers. American Journal of Plant Sciences. 2015;6(14):2385-92.

4 

4. Cruz CD, Regazzi AJ, Carneiro PCS. Modelos biométricos aplicados ao melhoramento genético (volume 1. Viçosa, Editora UFV. 2004;668.

5 

5. Paiva CL, Viana AP, Santos EA, Freitas JCO, Amaral Junior AT do. Genetic gain estimated by different selection criteria in guava progenies. Bragantia. 2016;75(4):418-27.

6 

6. Santos PR dos, Preisigke S da C, Viana AP, Cavalcante NR, Sousa CMB de, Amaral Júnior AT de. Associations between vegetative and production traits in guava tree full-sib progenies. Pesquisa Agropecuária Brasileira. 2017;52(5):303-10.

7 

7. Uurtio V, Monteiro JM, Kandola J, Shawe-Taylor J, Fernandez-Reyes D, Rousu J. A tutorial on canonical correlation methods. ACM Computing Surveys (CSUR). 2018;50(6):95.

8 

8. Carvalho IR, de Souza VQ, Nardino M, Follmann DN, Schmidt D, Baretta D. Correlações canônicas entre caracteres morfológicos e componentes de produção em trigo de duplo propósito. Pesquisa Agropecuária Brasileira. 2015;50(8):690-7.

9 

9. Saba J, Tavana S, Qorbanian Z, Shadan E, Shekari F, Jabbari F. Canonical Correlation Analysis to Determine the Best Traits for Indirect Improvement of Wheat Grain Yield under Terminal Drought Stress. Journal of Agricultural Science and Technology. 2018;20(5):1037-48.

10 

10. Cankaya S, Balkaya A, Karaagac O. Canonical correlation analysis for the determination of relationships between plant characters and yield components in red pepper (,i.Capsicum annuum,/i. L. var. conoides (Mill.) Irish) genotypes. Spanish Journal of Agricultural Research. 2010;8(1):67-73.

11 

11. Alavi Siney SM, Saba J. Studying the association between physiological and agronomical characteristics of different wheat genotypes in dryland condition using canonical correlation analysis. Environmental Stresses in Crop Sciences. 2014;7(1):13-23.

12 

12. de Souza VQ, Baretta D, Nardino M, Carvalho IR, Follmann DN, Konflanz VA, et al. Variance components and association between corn hybrids morpho-agronomic characters. Científica. 2015;43(3):246-53.

13 

13. Ceccon G, Santos A, Teodoro PE. Relationships between primary and secondary yield components of a maize population after 13 stratified mass selection cycles. Journal of Agronomy. 2016;15(1):33-8.

14 

14. Pereira EM, Silva FM, Val BHP, Neto AP, Mauro AO, Martins CC, et al. Canonical correlations between agronomic traits and seed physiological quality in segregating soybean populations. Genetics and molecular research. 2017;16(2)

15 

15. Resende MDV de. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology. 2016;16(4):330-9.

16 

16. Hernández JA, Pérez JJM, Bosch ID, Castro SN. Clasificación de los suelos de Cuba 2015. Mayabeque, Cuba: Ediciones INCA. 2015;93.

17 

17. Rodríguez NN, Valdés-Infante J, Becker D, Velásques B, Coto O, Rohde W, et al. Morphological, agronomic and molecular characterization of Cuban accessions of guava (Psidium guajava L.). Journal of Genetics and Breeding (Italy). 2004;58(1):79-89.

18 

18. MINAG. Instructivo Técnico para el cultivo de la Guayaba. La Habana, Cuba: Instituto de Investigaciones en Fruticultura Tropical; 2011 p. 38.

19 

19. UPOV. Guidelines for the conduct of tests for distinctness, homogeneity and stability. Guava (Psidium guajava L.). UPOV Geneva; 1987.

20 

20. Rodríguez-Medina NN, Fermin GA, Valdés-Infante J, Velásquez B, Rivero D, Martínez F, et al. Illustrated descriptors for guava (Psidium guajava). Acta Horticulturae. 2010;(849):103-10.

21 

21. SAS S. STAT 9.3 User's guide. Cary, NC: SAS Institute Inc. 2011;

22 

22. Protásio T de P, Neto G, Maciel R, Santana J de DP de, Guimarães Júnior JB, Trugilho PF. Canonical correlation analysis of the characteristics of charcoal from Qualea parviflora Mart. Cerne. 2014;20(1):81-8.

23 

23. SAS Institute Inc. Base SAS 9.3 Procedures Guide: Statistical Procedures. 2011;239-505.

24 

24. SAS S. for Windows Version 9.3 SAS Institute Inc. Cary, NC, USA. 2011.

25 

25. StatSoft INC. STATISTICA (data analysis software system) version 10. 2010.

26 

26. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 1996 New York. NY: Longman. :464.

27 

27. Pelea LP, Fernández EB, Herrero JV-I, Palenzuela JBV. Estimación de heredabilidad y correlaciones de caracteres cuantitativos evaluados en poblaciones de guayabo (Psidium guajava L.(Myrtaceae))/Heritability and correlations estimation of quantitative traits evaluated in guava (Psidium guajava L.(Myrtaceae)) populations. Revista Cubana de Ciencias Biológicas. 2018;6(1):10.

28 

28. Kashiani P, Saleh G. Estimation of genetic correlations on sweet corn inbred lines using SAS mixed model. Am J Agric Biol Sci. 2010;5(3):309-14.

29 

29. MARÇAL T de S, FERREIRA A, OLIVEIRA W dos S, GUILHEN JHS, FEREIRA M da S. Correlações genéticas e análise de trilha para caracteres de fruto da palmeira juçara. Revista Brasileira de Fruticultura. 2015;37(3):692-8.

30 

30. Shiva B, Nagaraja A, Srivastav M, Goswami AK. International Journal of Agricultural Sciences. 2017. Correlation studies among vegetative, fruit physicochemical characters of guava (Psidium guajava L.). - Buscar con Google [Internet]. [cited 11/08/2019].

31 

31. Silva LA, Peixoto LA, Teodoro PE, Rodrigues EV, Laviola BG, Bhering LL. Path analysis and canonical correlations for indirect selection of Jatropha genotypes with higher oil yield. Genetics and molecular research: GMR. 2017;16(1).

32 

32. Erayman M, Abeyo B, Baenziger P, Budak H, Eskridge K. Evaluation of seedling characteristics of wheat (Triticum aestivum L.) through canonical correlation analysis. Cereal research communications. 2006;34(4):1231-8.

33 

33. Cuadra CM. Nuevos métodos de análisis multivariante. Barcelona, Spain: CMC Editions. 2018. 305 p.

34 

34. Neder DG, Costa FR da, Edvan RL, Souto Filho LT. Correlations and path analysis of morphological and yield traits of cactus pear accessions. Crop Breeding and Applied Biotechnology. 2013;13(3):203-7.

 

 

Recibido: 30/10/2018

Aceptado: 14/06/2019

 

 


Los autores de este trabajo declaran no presentar conflicto de intereses.

Este artículo se encuentra bajo licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0)

La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.


Traducir DocumentoOriginal article

Canonical correlation between vegetative and fruit characters in guava families (Psidium guajava L.)

  [*] Author for correspondence. lene@fbio.uh.cu


ABSTRACT

Guava is a crop of a great economic importance in tropical and subtropical regions of the world. The knowledge of the associations among agronomic importance characters has a great utility in breeding and cultivar selection programs. In the present study, canonical correlation analysis was used to estimate the relationship between vegetative and fruit traits, evaluated in three full-sib families of guava. The families were obtained from intraspecific controlled crosses, made at the Tropical Fruits Research Institute. Positives and significant genetic correlations were observed among the most of fruit traits. Few associations were detected among vegetative and fruit traits. A significant canonical correlation coefficient was only detected in the first pair of canonical varieties. The analysis indicated that, among vegetative traits, leaf width was the trait with the most contribution to the canonical varieties explanation in the guava full-sib families. Among fruit traits, number of seeds, fruit width and internal flesh thickness were the traits that most contribute to the canonical varieties’ estimates. With the use of canonical correlation analysis, it was determined that there is a low association between the groups of vegetative and fruit traits. For that reason, in these guava families, some of these traits group must not be used to predict the behavior of the other.

Key words:
plant breeding; selection; genetic correlation; multivariate analysis.

INTRODUCTION

Guava (Psidium guajava L.), is one of the best known fruit trees, which is widely cultivated in more than 60 countries, in the tropical and subtropical regions of the world 1. It is included in the genus Psidium that groups around 150 species of trees and shrubs, of which only 20 produce edible fruits 2.

The demand and expansion of the guava crop has been developed by the need to obtain cultivars, with good quality and long-lasting fruits, resistant to diseases and with high nutrient content 3. The selection of promising genotypes and the proposal of new cultivars requires the evaluation of characters of agricultural interest, which have quantitative inheritance and have a negative environmental effect. Many of these characters are associated with others, so the selection of one character can affect others positively or negatively 4. For this reason, it is important to determine the correlations between characters of interest for improvement, which can be caused by gene linkage or pleiotropy 5.

When the characters are correlated, the selection criterion that considers a single variable may not generate a satisfactory genetic gain for all the evaluated characters 5. Correlation analyzes are feasible to determine the mutual relationships between several characters and suggest the advantage of a selection scheme for more than one character at a time 1. However, the magnitude and value of the correlation coefficients is not sufficient to clarify the relationships between the characters, because there is no cause-effect relationship between them 6.

Canonical correlation is a multivariate analysis method used to examine the relationship between two groups of characters 7. This analysis allows grouping of characters of interest, in such a way that the determination of associations between the groups makes it possible to indirectly select characters 4, thus providing valuable information for the selection of ideotypes in breeding programs 8. In this technique, correlation estimates are made between linear combinations of the two groups of characters, called canonical variables. The correlation between the corresponding pairs of canonical variables is defined as canonical correlation 9.

In agronomy, canonical analysis has been used to estimate the association between two different groups of characters; for example, between morphological and biochemical characters; vegetative characters and performance components; agronomic and seed quality characters; physiological and morphological characters, among others. These studies have been carried out in various crops such as red pepper (Capsicum annuum L.) 10, wheat (Triticum aestivum L.) 8,9,11, corn (Zea mays L.) 12,13, soy (Glycine max L.) 14, but they have been little used in fruit trees.

In all the previously mentioned studies, the canonical analysis was performed with the phenotypic values of the characters. Some authors have suggested that it is more effective to perform it with the predicted genetic values 6. Genetic values can be predicted through the methodology of mixed models (REML-BLUP, procedures of maximum restricted likelihood-best linear unbiased), which provide more precise and exact inferences 6,15. These authors used the canonical correlation analysis to determine the association between vegetative characters and yield components in families of complete guava siblings, based on the predicted genetic values.

Based on the elements described above, this paper aims to evaluate the association between vegetative and fruit characters in families of complete siblings of guava, by calculating canonical correlations.

MATERIALS AND METHODS
Plant material used in the experiments

The study was developed at the Basic Scientific-Technological Unit (UCTB) of Alquízar, Artemisa province, belonging to the Tropical Fruit Research Institute (IIFT) of Cuba, which is located at 22º 47 'north latitude and 82º 31 'west longitude, 11 m above sea level, on an eutrophic Ferralsol soil, with a flat topography of zero slope 16.

Three families of complete siblings of guava (Psidium guajava L.), obtained from intraspecific crosses, were carried out by means of controlled pollination in 2001. Three plants of the cultivar 'Cuban Red Dwarf' ('EEA) were used as female progenitors. 18-40'), which is used on a commercial scale in the country. As male parents the cultivars were used: 'N6', 'Suprema Roja' and 'Belic L-207'. These cultivars were selected as progenitors, because they presented great phenotypic and genotypic variability, detected when evaluating the germplasm bank of the culture by means of morphological and molecular markers 17.

The seeds obtained from each cross were sown in seedbeds and subsequently transplanted into individual 26 x 46 cm bags containing Ferralsol soil and organic matter (cachaza) at the 3:1 ratio. When the plants were between 50 and 60 cm high, they were planted in areas of the UCTB, following a 6 x 5 m planting frame. Each of the plants obtained can be considered a different genotype, because they were obtained from seeds, so there is only one replica per genotype. The three families were planted adjacent to each other, forming a compact block in the same lot, next to the parents.

The plants were maintained with localized irrigation, using the drip irrigation technique with RAM brand emitters of 2.3 L h-1, spaced at 0.65 m within a 20 mm diameter side. Irrigation was applied with fixed doses and fixed intervals (alternate days) and was suspended during heavy rain events. Cultural work, fertilization and phytosanitary control were carried out according to the Technical Instructions of the crop 18.

Quantitative Character Evaluation

In the progenies resulting from the three crosses and their parents, ten quantitative characters of those proposed as guava descriptors were evaluated 19,20. The measurements were made taking into account the recommendations of the crop descriptor, published by UPOV 19. The characters evaluated were: leaf length (mm); blade width (mm); plant height (m); fruit mass (g); fruit length (mm); fruit width (mm); external thickness of the pulp (mm); internal thickness of the pulp (mm); number of seeds per fruit and total mass of seeds per fruit (g).

The plants began to be evaluated at five years of age, starting in 2006 and measurements were made for three consecutive years (2006-2008), in each of the genotypes of the three families. The vegetative characters were evaluated in the March-April period and the fruit characters in the August-September period, which is the peak of summer harvest. The fruits were harvested at their physiological maturity and were evaluated in full ripening, two or three days after being harvested. For the measurement of these characters, technical scales, millimeter rulers and king's foot were used.

Evaluation of the association between vegetative and fruit characters, with the use of canonical correlation analysis

In order to identify and quantify the linear association between the group of vegetative characters and the group of characters of the fruit, a canonical correlation analysis was developed, which focuses on the correlation between linear combinations belonging to the character groups. This analysis was performed with the use of the predicted genetic values, based on the best unbiased linear predictors (BLUP) that were obtained by the maximum restricted likelihood method (REML) with the use of the MIXED procedure. The equation of the mixed model used was as follows:

where:

  • y is the vector of observations.

  • r is the vector of measurements that includes the general mean and is considered of fixed effects.

  • g is the vector of individual genotypic effects considered random.

  • a is the vector of environmental effects (years of evaluation) considered of fixed effects.

  • e is the vector of errors or residuals (random).

  • X, Z and W are the known incidence matrices, associated with the vectors r, g and a, respectively.

Prior to the calculation of the canonical correlation, the adjustment of the values of each of the characters to the normal distribution was evaluated, to verify compliance with the premise of multivariate normality that the analysis has 21,22, with the use of the goodness of fit tests of Kolmogorov-Smirnov, Shapiro Wilk, Cramer-von Mises and Anderson-Darling, which provides the UNIVARIATE procedure 23.

The CANCORR procedure was used to perform the canonical correlation analysis, which first determined the genetic correlations between all the evaluated characters, based on the genetic values estimated with the BLUP procedure 15. Subsequently, the association was identified between the group of vegetative characters (plant height, length and width of the fruit) and the group of fruit characters (mass, length and width of the fruit, external and internal thickness of the pulp, number of seeds and total mass of seeds per fruit), with the calculation of the canonical correlation. Three functions or canonical variables were determined. The procedure uses the F statistic to test a series of null hypotheses that state that each canonical correlation is equal to zero in the population 21. Also, for each pair of canonical variables (Ui, Vi), the values of the canonical correlations, the average variance explained, the redundancy values and the canonical coefficients were determined.

All statistical analyzes were developed using the SAS program, version 9.3 24.

RESULTS AND DISCUSSION

With the completion of the MIXED procedures, the BLUPs were obtained, which constitute the predictors of the genetic values (Breeding value). These genetic values were used to determine the association between vegetative characters (height of the plant, length and width of the leaf) and of the fruit (external and internal thickness of the pulp, number and total mass of the seeds by fruit, mass, length and fruit width), based on the canonical correlation analysis. This analysis is a special case of a general linear model that is based on the correlation matrix of all the evaluated characters 25. Its objective is to look for the relationships that may exist between two groups of characters and their validity 6.

It was observed that, taking into account all values obtained in the three families for each character, the adjustment to the normal distribution for each of them was achieved.

Table 1 shows the values of the correlation coefficients among the ten characters evaluated, with their statistical significance. Most of the fruit's characters showed significant and positive correlations between them, with the exception of the length of the fruit, with the internal thickness of the pulp and the number of seeds and the external thickness of the pulp with the number of seeds, in which negative coefficients were obtained. Among the vegetative characters, only a positive and significant correlation was observed between the length and width of the leaf. This last character is positively correlated with all of the fruit, with the exception of the length. Plant height was not associated with any of the characters evaluated in the three guava families.

The greatest correlations were observed between the mass and width of the fruit (0.8866), the mass of the fruit and the external thickness of the pulp (0.7445) and the number and total mass of the seeds per fruit (0, 7049) (Table 1). The high values of the correlation coefficients can be the result of the pleiotropism effect, in which the same gene affects the expression of more than one character 26. This information is useful for plant breeding, because it favors the simultaneous selection of two or more characters, by selecting only one of them.

Similar results were obtained by estimating the genetic correlations in the same guava families, but by the progeny-parent covariance method 27, in which the progenie-progenitor covariance of each character and the covariance between two characters must be calculated. In another study, the genetic correlations between characteristics associated with the yield in maize lines (Zea mays L.) 28 were estimated, using a manual method that uses the formula proposed by other authors 26 and the maximum likelihood restricted, through a MIXED procedure, in which the GCORR option was specified for genetic correlations to be calculated. These authors also found equivalent results by the two methods, when comparing the genetic correlations obtained by both methods, with the use of a Student's t-test of paired samples and finding no significant differences. This result allowed them to conclude that genetic correlations can be estimated through the PROC MIXED that is simpler and quicker to do 28.

In an evaluation of fruit characters and yield components in families of complete guava siblings, low values of the genetic correlation coefficients were obtained 5. These results are similar to those obtained in the present work in the coefficients calculated between vegetative and fruit characters. The authors stated, based on the results, that the selection of these characters will be carried out without having a correlated response.

It is possible to make a profit with correlated answers in the characters that show positive and significant associations. The existence of a positive genetic association between two characters implies that changes in one of them can cause alterations in the other 4. Since all correlations were positive with the mass of the fruit, the width of the fruit and the total mass of the seeds, simultaneous selection can promote gain in the mass of the fruits and the mass of the seeds, more efficiently 29, as stated, when the characters that contribute positively with a character of interest are selected, a more effective use of the correlation is made 26.

The correlation studies between different characters of the plant and the fruit, in guava genotypes, can provide an idea of which characters could be used for the selection of desirable parameters in future crop improvement programs. The positive and significant correlations between characters of interest are favorable for the improver, because they can help in the simultaneous improvement of both characters. On the other hand, the negative correlation could overlap the synchronized expression of both characters 30.

The knowledge of the genetic correlations can be very useful in the improvement, for the selection of characters with low heritability and difficulties in their measurement, because under these conditions, the indirect selection of them can be carried out; That is why genetic correlations must be estimated in improvement programs 4.

As low values of the genetic correlation coefficients between vegetative and fruit characters were obtained, they are not important indicators of each other, that is, they cannot be used to make the selection of more than one character. In addition, correlations between pairs of characters are more difficult to explain simultaneously 10,21. For this reason, three canonical correlation coefficients were estimated to explain the interrelationship between the two groups of characters, since the number of canonical correlations that need to be interpreted is equal to the lower number of characters in the groups 21,25, that in this study corresponds to the group of vegetative variables.

Table 2 shows the results obtained when performing the canonical analysis between the two groups of characters. Only the first pair of canonical variables or functions (U1, V1) showed a significant canonical correlation (p=0.001) between the vegetative and fruit characters, in relation to the likelihood ratio test. In this first canonical function, which is the most important because it explains the highest percentage of the variance of the set of variables and indicates the maximum correlation between the two groups of characters, a correlation coefficient value of 0.3282 was obtained. This value represents the greatest possible correlation between any linear combination of the vegetative characters and any linear combination of the fruit characters 21 and can be interpreted as the simple correlation between the weighted summation or linear combination of the values in each character group , with the weighting belonging to the first canonical function 25.

Other studies have also obtained only a significant canonical correlation value, in the first canonical function. For example, when relating morphological and productive characters in families of half-brothers of Jatropha curcas L. 31, between agronomic and physiological quality characters of the seed in segregating soy populations 14 and when associating morphological and germination variables in wheat cultivar seeds 32.

The second (U2V2) and the third (U3V3) canonical functions will explain the highest percentage of the variance left by the first canonical function, that is, the residual or remaining variance of the first functions. In addition, canonical correlations decrease as additional functions are calculated; that is, the first function reflects the greater correlation between the two groups, the following the second correlation and so on 21.

The canonical functions significance test uses an approximation of the F test to determine the significance of the Wilks Lambda, which is equal to the likelihood ratio test 21. This test is used to assess whether the variables of one group are correlated with those of the other group. This is done, sequentially, if all the canonical functions are significant or not 25. First, the three canonical functions are observed together and it is evaluated whether the three canonical correlations are zero; If the null hypothesis is rejected (p<0.05), the second and third correlations are evaluated 21. In order to determine the statistical significance of the other two functions, the first function, which is the most significant one, is eliminated and if the second test is also significant, it is possible to proceed only with the third one, to determine if the remaining function is also significant 25. If only the first canonical function is statistically significant, as in the present work, it is the only one that must be interpreted.

Although the canonical variables are artificial, they can be identified in terms of the original variables. For this, the standardized canonical coefficients for each group of characters can be interpreted in the three functions or canonical variables (U1V1, U2V2 and U3V3), as well as, the correlations between the canonical variables and the original variables, which are shown in the Tables 3 and 4, respectively. The canonical coefficients are standardized to allow their interpretation, because the original variables do not have to have homogeneous variances, nor be measured in the same unit 21. The magnitudes of the canonical coefficients indicate the relative contributions of each variable in the canonical linear combination 25; that is, the coefficients indicate the effects of vegetative characters on those of the fruit in guava genotypes.

When observing the values obtained for the standardized coefficients (Table 3), in the first function that is the only one significant, it can be said that, if the values of leaf width and plant height increase, the width will increase of the fruit, the external thickness of the pulp and the number of seeds and will decrease the internal thickness of the pulp, the total mass of the seeds, the mass and the length of the fruit. The characters that contributed most to the first canonical variable (V1) among those of the fruit were: the width of the fruit (1.0750) and the number of seeds (0.7803), while the width of the leaf (1.2832) was the one with the greatest contribution to the first canonical variable of the vegetative (U1). These three characters showed positive and significant genetic correlations between them and with the majority of the remaining fruit characters (Table 1). The remaining vegetative and fruit characters had a lower contribution to the first pair of canonical variables U1, V1.

The proportions of variance extracted in the two groups and the redundancy values are shown in Table 4. The values of proportion of variance extracted and redundancy indicate the magnitude of the total correlations between the two groups of variables, relative to the variance of the original variables. They are different from the square canonical correlation value, because the latter statistic expresses the proportion of the variance explained in the canonical variables 25.

The first canonical variable extracted, on average, 38.77 % of the variance of the vegetative characters and 29.20 % of the fruit characters, values that can be considered low. The three canonical functions together extracted 100 % of the variance of the group of vegetative characters and 50.59 % of the variance of the fruit characters. If the redundancy values are observed, with the fruit characters only 4.46 % of the variance in the vegetative characters can be explained, based on the first canonical function; while with the vegetative characters, 4.40 % of the variability in the fruit's characters is explained (Table 4).

Redundancy coefficients are used to measure the predictive capacity of one set of characters with respect to the other 33. The results indicate that there is a weak association between the vegetative and fruit characters, so the behavior of the guava genotypes in the fruit characters cannot be predicted, based on the values of the vegetative characters and vice versa. This result confirms the one obtained previously, when estimating the genetic correlations between all the characters and obtaining low values of the correlation coefficients between vegetative characters and fruit characters.

It can be concluded then, that there is a weak correlation between the vegetative characters and the fruit characters evaluated in the three families of siblings full of guava, so the selection of certain vegetative characters will not imply that it carries that of the characters of the fruit and vice versa. Similar results were obtained in progenies of complete guava brothers in Brazil 6. These authors, when using the canonical correlation analysis, determined that the correlation coefficient values for the canonical functions were low and that there was little genetic correlation between vegetative characters and yield components.

The canonical coefficients are important to consider in the decisions that are made in the stages of selection of superior individuals, in the improvement programs, for characters of interest, when two different groups of characters are considered 6. The knowledge of the degree of association, through correlation studies, can identify characters that can be used as indirect selection criteria for performance or as secondary characters, which improves the efficiency of the selection processes 34. Several bivariate and multivariate correlation measures can be used to determine the relationships between variables; however, bivariate correlation coefficients may fail to determine complex relationships. Multivariate models may be appropriate to ensure relationships between a large number of variables. Canonical correlation analysis can be used to determine relationships between multiple dependent and independent variables; therefore, it is more successful to estimate complex relationships in the biological sciences 9.

CONCLUSIONS

  • Among the fruit characters evaluated in the families of complete guava brothers, a high genetic correlation was observed.

  • The canonical correlation analysis used detected a low association between the group of vegetative characters and the group of characters of the fruit, in the three families of complete siblings of guava.