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The living soil: a bit of what happens in this environment.
An emphasis on phytopathogens
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Soil is an ecosystem with a carbon pool that suports biological diversity. In this review, we present how
significant is the symbiosis between the plant root and the macro and microorganisms of the soil, as well as the benefits it
generates to achieve an ecological balance and maintain low populations of plant pathogens in food production. For
instance, earthworms, collembola, mealybugs and oribatid mites greatly influence the functioning of the soil system, as
they build and maintain soil structure and actively participate in nutrient cycling through mineralization and humification
processes, in addition to consuming pathogens. On the other hand, microorganisms such as mycorrhizal fungi, which
benefit by absorbing the nutrients of the plant and help it absorb minerals from the soil, provide protection to the roots
against phytopathogens. Mycorrhizal fungi induce changes in the plant and then the plant responds by producing exudates
from the roots that reduce or repel plant pathogens. Another example is the Trichoderma fungus, known as a biocontrol
agent for producing secondary metabolites with antimicrobial activity against plant pathogens. Biological control agents
and their secondary metabolites are potential approaches currently being used to reduce or replace agrochemicals. Finally,
integrated crop management promotes competition and balance essential to maintaining soil health and ensuring food
production.
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El suelo es un ecosistema con una reserva de carbono que sustenta la diversidad biológica. En esta revisión,

presentamos cuán significativa es la simbiosis entre la raíz de la planta y los macro y microorganismos del suelo, así como
los beneficios que genera para lograr un equilibrio ecológico y mantener bajas poblaciones de fitopatógenos en la
producción de alimentos. Por ejemplo, las lombrices de tierra, colémbolos, cochinillas y ácaros oribátidos influyen, en
gran medida, en el funcionamiento del sistema del suelo, ya que construyen y mantienen la estructura del suelo y
participan activamente en el ciclo de nutrientes, a través de procesos de mineralización y humificación, además de
consumir fitopatógenos. Por otro lado, microorganismos como los hongos micorrízicos, que se benefician al absorber los
nutrientes de la planta, la ayudan a absorber los minerales del suelo y brindan protección a las raíces frente a los
fitopatógenos. Los hongos micorrízicos inducen cambios en la planta y luego la planta responde produciendo exudados de
las raíces que reducen o repelen a los patógenos. Otro ejemplo es el hongo Trichoderma, conocido como agente de
biocontrol para la producción de metabolitos secundarios con actividad antimicrobiana contra fitopatógenos. Los agentes
de control biológico y sus metabolitos secundarios son enfoques potenciales que se utilizan actualmente para reducir o
reemplazar los agroquímicos. Finalmente, el manejo integrado de cultivos promueve la competencia y el equilibrio
esenciales para mantener la salud del suelo y asegurar la producción de alimentos.

anélidos, hongos, simbiosis, Trichoderma.
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INTRODUCTION
Feeding the world's population is a priority issue,

therefore the 2030 Agenda for Sustainable Development of
the United Nations includes within its 17 Sustainable
Development Goals, the goal zero hunger (1).

Achieving this is challenging, as plants are exposed to
many soil conditions that could affect growth and
production. For instance, pests and diseases are one of the
biggest challenges crop growers face every year. In
addition, emerging diseases constitute one of the greatest
risks due to the devastation they cause in agricultural
production (2-5).

It is known that the excessive application of
agrochemicals have an immediate effect on what is desired
to achieve during agricultural production (6); however, this
is achieved with environmental consequences and damage
to the health of agricultural workers and consumers.
Sustainable technologies must be used to produce the food
demanded by the population without affecting natural
resources.

The soil, because it shelters a great biodiversity, is
considered the basis for the production of healthy foods.
Microbial diversity has several roles, one of which is the
solubility of minerals to make them more available to plants.
For example, phosphate solubilizing bacteria contribute up
to 50 % of the element solubilization (7). Some organisms
such as mycorrhizal fungi carry the elements to roots
through their hyphae (8), even endomycorrhizae deposit
them in the interarbuscular space (inside the plant).

This microbial activity promotes fertile soil and a balance
of organisms and microorganisms. For instance, the
earthworm improves the soil structure while reducing the
populations of phytopathogens (Figure 1). Also the fungus
Trichoderma has a broad spectrum of action that allows it to
reduce a large number of plant pathogens.
 

Figure 1. Eartworms and other microorganisms, members of
the soil ecosystem in equilibrium, each with a specific task

DEVELOPMENT

Soil organisms
Earthworms, by its ability to dig galleries and produce

demographic profiles and relationships with the soil

microflora, are a key component in the nutrient cycling in
soils. Their physical activities and resultant chemical effects,
promote short and rapid cycles of nutrients and assimilable
carbohydrates (9).

Moreover, in agriculture the addition of vermicompost is a
common practice. Vermicompost has an essential role to
promote life in the soil by improving the texture and
promoting satisfactory levels of macro and micronutrients
(10). It contains many compounds rich in beneficial
microorganisms and growth hormones that function as
biofertilizing and biological control agent against plant pests
and pathogens (11). In addition, during vermicomposting,
the Californian Red worm (Eisenia foetida) ingests organic
matter, which progressively decomposes and fragments.
This matter is made up of microorganisms including a large
number of fungi. The mucous substances yielded by
earthworms have strong antimicrobial and antifungal activity
(12). Through their skin secretions and antimicrobial
protein, they control microorganisms (13), thus reducing the
populations of soil plant pathogens.

The surface of the earthworm's skin contains
antimicrobial peptides that protect it from the environment. It
discharges peptides such as lysozyme through its skin,
resulting in antimicrobial activity. In addition, the body wall
and intestinal secretion have been shown to reduce
Fusarium oxysporum (12).

Earthworms feed on soils that contain organic materials,
live microorganisms, and insects. Once the food is
ingested, it is modified in the earthworm body to facilitate its
absorption. When entering through the mouth, the material
is swallowed by the pharynx which is a force pump
(Figure 2). After that, the muscles contract and move the
food up the esophagus. Then, it goes to the crop (which
contracts more than the gizzard) where it is stored and
moves towards the gizzard. This is a strong muscle that
grinds the material into very small parts, where the enzyme
secretion take part in breaking down the products. The
finely crushed material goes through the digestion process
in the intestine. Here more enzymes are added to promote
the breakdown into simple molecules (14). Enzymes include
protease, lipase, amylase, lichenase, cellulase and
chitinase (15). All this process achieves partially the
elimination of plant pathogens.
 

Figure 2. Earthworm's body organs, where the decomposing of
ingested organic matter occurs, due to enzymatic activity
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Earthworms as Eisenia foetida is reported to control
nematodes as Pratylechus sp in tomato (16), Meloidogyne
javanica in cucumber (17), and Meloidogyne hapla in
tomato (18).

Other reserchers found that the earthworm Lumbricus
terrestris fed on sclerotia of Sclerotinia sclerotiorum when
they were hydrated (19). L. terrestris consumed an average
of 61 % of sclerotia that were hydrated for 13 weeks.
Besides, worm humus and arbscular mycorrhizal fungi
improve the quality of fruits (20).

Soil microorganisms, interactions and  microen-
vironments

The biological structure of the soil is made up of a large
number of bacteria, actinomycetes and fungi (21). All of
them are associated with organic matter and polymeric
microbial materials such as enzymes and extracellular
polysaccharides that they themselves produce.

Microorganisms are found in dense tissues of clay or
humified organic matter, in mucigel deposits, in micropores,
or in carbohydrate-rich root plants. At these sites,
microorganisms temporarily survive adverse conditions.

In this review we address two types of microorganisms
that benefit plants and that are generally found naturally in
soils in symbiosis with plants, and that can be used to
enrich soils, such as mycorrhizal fungi and Trichoderma
spp.

Once the micro and macroelements are solubilized by
bacteria, they are transferred through the hypha of the
mycorrhizal fungus to the previously mycorrhizal root.
Phosphate transporter enzymes of the fungus and the plant
are involved in this process (8).

The protection against plant pathogens that mycorrhizal
fungi confer on plants has been demonstrated (22, 23). In
the rhizosphere, microorganisms compete for space and
nutrients. In addition, mycorrhizae also stimulate the
biochemical defense mechanisms of plants (22).

The interactions between mycorrhizae and plants are
self-regulating, in fact, when mineral nutrients are available
in the soil, the colonization of mycorrhizae is reduced (24).
Apparently, all microbial populations in the soil are self-
regulating, even the plant regulates microorganisms in its
rhizosphere. Thus, by adding microorganisms to the soil,
they can be active for months or a year and disappear after
that time. Some authors found that by incorporating the
ectomycorrhizal fungus Pisolithus tinctorius, it protected
Pinus sylvestris seedlings from the attack of Fusarium
moniliforme and Rhizoctonia solani; this protection lasted
one year (25).

It is very interesting to know the symbiosis in depth. The
interaction begins through signals, and depending on the
requirements of the plant and other as yet unknown factors,
soil microorganisms regulate themselves.

Endomycorrhizal fungi are also root protectors against
pathogens. For instance, a mixture of Arbuscular
mycorrhizal fungi (AMF) composed by Glomus aggregatum,
Gigaspora margarita and Glomus intraradices suppressed

root rot by Fusarium solani in Phaseolus vulgaris under
greenhouse conditions (26).

Even endomycorrhizal fungi can control nematodes such
as Meloidogyne incognita (27) and Meloidogyne javanica
(28).

The reduction in the penetration of M. incognita in
endomycorrhized plants may be due to the fact that AMF
induce changes in the plant, and in response, the roots
produce exudates, which suggests that exudates affect the
motility of nematodes in the soil.

Other possibilities are the production of nematicidal
compounds, increased lignification of the roots, changes in
the composition of the cell wall and activation of the
defense mechanisms of plants.

The accumulation of phenolic compounds, such as
phytoalexins and flavonoids and isoflavonoids has been
demonstrated in mycorrhizal roots in the presence of the
nematode. AMF can also increase the activity of defense
enzymes such as peroxidase, polyphenoloxidase,
superoxide dismutase, chitinase and β 1,3 glucanase (27).
In general, AMF naturally present in soil may be highly
beneficial to sustainable agriculture, maintaining plant
production by reducing pathogens.

Moreover, Trichoderma is a beneficial fungus that has
demonstrated efficiency in the control of root pathogens
(29) including nematodes (30), due to its ability to secrete
volatile and non-volatile compounds, and secondary
metabolites. Its direct mechanism includes competition,
mycoparasitism, antibiosis, and induction of plant resistance
mechanisms, as well as indirect mechanisms such as the
inactivation of the enzymes produced by the pathogen (31,
33).

Among secondary metabolites are terpenes, pyrones,
gliotoxin, gliovirin, and peptaibols (34). Antifungal
metabolites produced by Trichoderma are
epipolythiodioxopiperazines, peptaibols, pyrones,
butenolides, pyridones, azaphilones, koninginins, steroids,
anthraquinones, lactones, trichothecenes, and other (35,
36).

The expression of genes related to secondary
metabolites in Trichoderma spp. depends on factors such
as pH signaling, velvet complex proteins and
communication signals with other microorganisms (37).

These metabolites exhibit bioactivity against plant
pathogens as Macrophomina phaseolina, Pythium spp.,
Sclerotium rolfsii, Rhizoctonia solani, Fusarium oxysporum,
Verticillium dahliae, Botrytis cinerea, Ascochyta citrullina,
Phytophthora parasitica, P. cinnamomi, Leptosphaeria
maculans, Clavibacter spp., Gaeumannomyces graminis,
Colletotrichum gloeosporioides, among others (34, 35,
38-40).

Plants, microorganisms and carbon
Plants take carbon dioxide from the atmosphere and

exude some carbon as a sugary substance through their
roots. This secretion feeds the microorganisms in the soil.
When plants die, microorganisms break down carbon and
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use it for metabolism. This microbial decomposition
releases carbon dioxide, therefore the soil stores more
carbon when it is full of microbial life (41, 42).

Mycorrhizal fungi produce mucilaginous substances (8)
such as glomalin. This is a very stable recalcitrant
glycoprotein, with a half-life of up to 42 years, and
constitutes the largest component of soil organic matter
(43), it also promotes soil aggregation. Mycorrhizal fungi
transfer more carbon to the soil than other microorganisms
(44) (Figure 3).
 

Figure 3. Carbon dioxide (CO2) scheme from entering the tree
canopy to its filtration into the soil, and the activity of
microorganisms
 

Some of the carbon remains in the soil from days to a few
years. Microorganisms can digest this carbon, thus emitting
carbon dioxide. Thus is how carbon can remain for years or
decades in a site (45). An important agricultural activity is
the application of compost to the soil. Compost harbors
microorganisms and can retain carbon for centuries.

Minimum tillage causes that the soil carbon is not
exposed to oxygen and the soil aggregates remain intact,
protecting their carbon (45-47).

Soil carbon sequestration is a natural way to remove
carbon dioxide from the atmosphere, and this can be
achieved with sustainable agricultural practices. These
practices will improve the ability of soils to store carbon and
help minimize the effects of global warming.

CONCLUSIONS
• This review presents how plants drawn CO2 from the air,

synthesize carbohydrates, which exude from roots, to
feed, attract or repel microorganisms. Additionally, the
important activity of soil organisms and microorganisms
for the plant benefit is highlighted, focusing on
earthworms, mycorrhizal fungi and Trichoderma since
they can reduce plant pathogens populations. All of them
within their specialty, achieve by competition for space,
or with physical and chemical mechanisms, reduce soil
plant pathogens.

• Earthworms, mycorrhizal fungi and Trichoderma,
naturally present in soil may be highly beneficial to

sustainable agriculture, maintaining plant production and
biological balance in soils. We conclude that integrated
crop management promotes competition and balance,
essential to maintaining soil health and ensuring food
production. Finally, knowledge of the diversity of edaphic
biota in agroecosystems allows the implementation of
strategies for land use.
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