Cultivos Tropicales Vol. 45, No. 4, octubre-diciembre 2024, ISSN: 1819-4087
Código QR
Cu-ID: https://cu-id.com/2177/v33n4e10
Revisión bibliográfica

Un acercamiento al mundo de las Ectomicorrizas

 

iDEduardo J. Pérez Ortega*✉:eddymalo@gmail.com


Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32700

 

*Autor para correspondencia. eddymalo@gmail.com

Resumen

Las ectomicorrizas generalmente se consideran la asociación simbiótica más avanzada entre plantas superiores y hongos porque, aunque involucran solo alrededor del 3% de las plantas con semillas, todas estas son especies leñosas, árboles y arbustos, incluida la mayoría de los árboles forestales. Por lo tanto, la asociación ectomicorrízica es importante a nivel mundial debido a la gran área cubierta por estas plantas y debido a su valor económico como fuente de madera. En la presente revisión se hace referencia a las características de la asociación, teniendo en cuenta la morfología de la simbiosis, los mecanismos empleados para establecer la asociación y como influencia en la nutrición de las plantas.

Palabras clave: 
transporte de nutrientes, fósforo, nitrógeno

Recibido: 14/8/2023; Aceptado: 11/6/2024

Conflicto de intereses: El autor declara no tener conflicto de intereses

Contribución de los autores: Conceptualización, Investigación, Escritura del borrador inicial, escritura, edición final y curación de datos- Eduardo J Pérez Ortega.

CONTENIDO

Introducción

 

Los hongos micorrícicos se encuentran ampliamente extendidos por la mayoría de los hábitats terrestres y forman una asociación simbiótica mutualista con más del 80% de las especies de plantas (11. Brundrett M, Tedersoo L. Evolutionary history of mycorrhizal symbiosis and global host plant diversity. New Phytologist 220: 1108–1115. 2018. ). Existen dos tipos de micorrizas en función de la relación que establecen las hifas con las células de las raíces de las plantas: las endomicorrizas, que forman sus asociaciones dentro de las células de la raíz de la planta hospedera y las ectomicorrizas, que se asocian externamente (22. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p. ).

Las micorrizas arbusculares se asocian con el 80 % de las plantas, mientras que las ectomicorrizas (EcM) lo hacen con alrededor del 2 % de las especies de plantas vasculares. Generalmente, en plantas leñosas, incluidas especies de los géneros Betula, Dipterocarpus, Myrtus, Fagus, Salix y Pinus También, especies del género Quercus, como los encinos y Rosa (22. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p. ). Sin embargo, debido a los procesos de degradación antrópica que sufren los sistemas boscosos del planeta (33. DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci, (2010). 3, 178–181. http://doi.org/10.1038/ngeo756), que conlleva a la disminución de la biodiversidad y por tanto a la disminución de los servicios que estos proveen (44. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460, 2008). http://doi.org/10.1126/science.1155365, 55. Aerts, R., and Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11:29. (2011). http://doi.org/10.1186/1472-6785-11-29), estas asociaciones han cobrado vital importancia. En los bosques tropicales y templados, la mayoría de las especies de plantas maderables son simbiontes obligados de las ectomicorrizas, las cuales proveen nutrimentos y agua a cambio del carbono fijado fotosintéticamente (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097).

Desarrollo

 

La deforestación es uno de los grandes retos que enfrenta la tierra con impactos que pueden ir desde la destrucción del hábitat de diferentes animales y plantas, limitar la diversidad genética por el aislamiento de poblaciones y hacer difíciles a algunas especies sobrevivir y reproducirse. La deforestación libera cantidades de carbono a la atmosfera que contribuyen al calentamiento global, cambiando los patrones climáticos, lo que impacta directamente en la agricultura y las fuentes de agua. Los bosques juegan un papel importante en el ciclo de la regulación del agua y la temperatura del planeta, así que el mantenimiento de la salud de los bosques permitiría una mejora en las condiciones de vida. Los proyectos de reforestación son esenciales para combatir el cambio climático y preservar la biodiversidad. En estos proyectos el uso de Ectomicorrizas cobra una vital importancia dado que estos microrganismos tienen una función importante en aliviar los estreses bióticos y abióticos de las plantas. En esta revisión proponemos acercarnos al mundo de las ectomicorrizas y conocer las ventajas que le brindan a sus plantas hospederas.

Evolución

 

En el Devónico, hace unos 380 millones de años apareció la lignina, lo que permitió que algunas especies de plantas alcanzaran grandes dimensiones (77. B. Meyer-Berthaud, S.E. Scheckler y J. Wendt Archaeopteris es el primer árbol moderno conocido. Nature 446, (1999): 904-907. ). Al descomponerse, los tejidos de estas plantas proveyeron de grandes cantidades de desechos de madera. Casi al mismo tiempo, los hongos basidiomicetos y ascomicetos, que podían descomponer la lignina, se diferencian de los glomeromicetos, que ya formaban las micorrizas arbusculares, según análisis taxonómico de las líneas de EcM. Sin embargo, en al menos cinco ocasiones, las EcM evolucionaron de ancestros no micorrícicos o micorrícicos facultativos (Coccoloba, Persicaria vivipara, Gymnopodium y Pisonieae dentro de los Caryophyllales y Kobresia dentro de los Poales) (88. Tedersoo L & Brundrett M. chapter 19: Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stu. 230, 2017. 407-467. L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230, DOI http://doi.org/10.1007/978-3-319-56363-3_19). Este planteamiento entra en contradicción con lo planteado por Maherali et al., (99. Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat (2016). 188:E113–E125. ) quienes sugieren que solo las MA pueden ser los ancestros de las EcM, no obstante, este último autor excluye a los grupos mencionados entre paréntesis (88. Tedersoo L & Brundrett M. chapter 19: Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stu. 230, 2017. 407-467. L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230, DOI http://doi.org/10.1007/978-3-319-56363-3_19).

En cualquier caso, las especies de plantas que evolucionaron para formar simbiosis con estos hongos, tenían la habilidad de colonizar sustratos desfavorables a las micorrizas arbusculares, es decir sustratos ricos en fenoles y taninos, lo que les permitió la acumulación de materia orgánica preservando esta asociación (1010. B. Wang y Y.L. Qiu. Distribución filogenética y evolución de micorrizas en plantas terrestres. Mycorrhiza '16', (2006). 299-363. Available from: http://mycorrhiza.ag.utk.edu/reviews/rev_wang1.pdf).

Características de las EcM

 

Como su nombre lo indica, la simbiosis ectomicorrízica no implica el ingreso del micelio dentro de las células de la raíz de la planta. Las hifas del hongo envuelven la raíz de la planta hospedera en un patrón de penetración intercelular, donde la hifa forma una red entre las células corticales llamada Red de Hartig (1111. Strullu DG. Les mycorhizes, Handbuch der Pflanzenanatomie. Berlin, 1985. , 1212. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press, 2008.). Esta red constituye el lugar de intercambio con la planta, que proporciona carbono orgánico, y el hongo, que proporciona diversos nutrimentos y agua (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097) A diferencia de las hifas de los hongos micorrícicos, que son cenocíticos (citoplasma común a muchos núcleos, sin septos), las hifas de los hongos ectomicorrízicos son septadas.

Las raíces ectomicorrizadas son morfológicamente diferentes de las raíces no ectomicorrizadas. En primer lugar, la producción de pelos es inhibida (1313. Mika Tarkka Uwe Nehls, Rüdiger Hampp. Fisiología de la ectomicorriza (ECM). Progreso en Botánica, (2005). Vol 66, Parte 3, 247-276. doi http://doi.org/10.1007/3-540-27043-4_1110.1007/3-540-27043-4_11) y la efectividad de estas estructuras es ampliamente superada por la del micelio. En segundo lugar, la corteza es hipertrófica, lo que aumenta el espacio disponible para la red de Hartig. En tercer lugar, las raíces se ramifican más y su crecimiento longitudinal es menor (1414. Francis Martin, Annegret Kohler, Claude Murat, Claire Veneault-Fourrey and David S. Hibbett. Unearthing the roots of ectomycorrhizal symbioses. New Phytologist, 2016. 220: 1012–1030 doi: http://doi.org/10.1111/nph.15076).

En las EcM, las hifas atacan las células epidérmicas de las raíces laterales emergentes. Esta hifa prolifera y se diferencia en una serie de capas de hifas para formar un tejido psudoparenquimatoso, que es el conocido como vaina o manto de Harting. Esta estructura contiene canales de agua y aire que transportan los nutrientes a las células simbióticas y se desarrolla alrededor de las células corticales en las angiospermas y tanto en las corticales como en las epidérmicas en las gimnospermas (1212. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press, 2008.).

El manto de Hartig (que resulta en un complejo laberinto de ramificación hifal y por tanto una gran área de superficie) forma una interfase eficiente para el transporte bidireccional de nutrimentos a través de las células que forman la superficie del hospedero (1515. Finlay, R. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot, (2008). 59, 1115–1126. , 1616. Peterson, R. L. & Massicotte, H. B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82, 1074–1088 (2004). ).

Especies de hongos involucrados

 

A pesar de que las micorrizas arbusculares son la forma más común de simbiosis micorrícica, el número de especies de hongos involucrados sigue siendo limitada (aproximadamente 200), en comparación con el número de especies de hongos ectomicorrízicos que ascienden, según algunos autores, a decenas de miles, distribuidos en unos pocos cientos de géneros (1717. Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010). -1919. Skrede, I. et al. Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol. Biol. 11, 230 (2011). ).

La mayoría de las especies de hongos en las asociaciones ectomicorrízicas forman parte de la división de basidiomicetos, ascomicetos y algunos del género Endogone (Mucoromycotina) (2020. Yamamoto K, Endo N, Degawa Y, Fukuda M, Yamada A. First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza, 2017. 27: 295–301. ).

En contraste con los hongos arbusculares, que aún no han tenido éxito en el cultivo axénico, algunas especies de hongos ectomicorrízicos son fáciles de cultivar en tales condiciones. Este es particularmente el caso de Boletus, Amanita y Lacaria. Otros géneros, como Tuber (las trufas) y Lactarius, son más difíciles de cultivar, mientras que con otros se sigue sin poder conseguirlo (22. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p. ).

Mecanismo de infección por las EcM

 

Se ha descrito un modelo por el cual los hongos EcM logran colonizar a las plantas hospederas. Este modelo contiene varias etapas.

Primero: la planta hospedera tiene un restringido set de genes que se inducen durante la fase de preinfección y durante la colonización del espacio apoplástico (2121. Duplessis, S., Courty, P. E., Tagu, D. & Martin, F. Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol. 165, 599–611 (2005). , 2222. Larsen, P. E. et al. Multi-omics approach identifies molecular mechanisms of plant–fungus mycorrhizal interaction. Front. Plant Sci. 6, 1061 (2016). ).

Segundo: los hongos EcM pueden alterar el metabolismo de la raíz para que la hifa sea acomodada en esta, similar a lo que ha sido observado para la simbiosis MA (2323. Luo, Z. B. et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol. 151, 1902–1917 (2009). , 2424. Tschaplinski, T. J. et al. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol. Plant Microbe Interact. 27, 546–556 (2014). ).

Antes del contacto físico, la hifa colonizadora altera el metabolismo de las auxinas endógenas, las moléculas señales de la raíz y las respuestas celulares de la planta colonizada, a través del uso de mecanismos que incluyen una variedad de moléculas difusibles (tales como auxinas de plantas y sesquiterpenos fúngicos) de forma tal que se producen más raíces, proveyendo al hongo una amplia área de colonización (2525. Plett, J. M. et al. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202, 270–286 (2014). , 2626. Ditengou, F. A. et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6, 6279 (2015). , 2727. Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant– microorganism interactions. Plant Cell Environ. 36, 909–919 (2013). ).

Tercero: se atenúa la función génica asociada con respuestas de defensa durante las primeras etapas de la invasión EcM, por la secreción de un efector fúngico denominado MiSSP. En el núcleo, MiSSP interactúa con el represor transcripcional JAZ 6 (JASMONATE ZIM DOMAIN) el cual es la clave reguladora de la vía de señalización del jasmonato. En el resto de la célula, cuando los niveles de jasmonato son bajos o están ausentes, JAZ6 inhibe la activación transcripcional de los genes responsables de la síntesis de ácido jasmónico, similar a lo que ocurre en la simbiosis MA con la proteína efectora Sp7, lo cual permite al hongo EcM colonizar la raíz mientras se "escapa" o subvierte la defensa de la planta (2525. Plett, J. M. et al. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202, 270–286 (2014). , 2828. Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbiosis. New Phytol. 208, 79–87 (2015). ).

Estudios moleculares han mostrado que estas proteínas efectoras son secretadas en las células de la planta hospedera y se translocan al núcleo, donde suprimen la expresión de los genes de defensa por interactuar físicamente con sus proteínas blanco (2929. Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015). ). Estos mecanismos de debilitación de las respuestas de defensa son cruciales para lograr la penetración hifal en los espacios apoplásticos (2828. Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbiosis. New Phytol. 208, 79–87 (2015). , 3030. Plett, J. M. & Martin, F. Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 26, 45–50 (2015).). Por otra parte, la planta hospedera responde, para desarrollar su interacción ectomicorrízica, secretando su propia proteína efectora y señales químicas, en respuesta a los efectores fúngicos (3030. Plett, J. M. & Martin, F. Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 26, 45–50 (2015).).

Cuarto: los efectores del hongo, al regular las enzimas que degradan paredes como parte del sistema de defensa de la planta, modifican el contacto célula-célula para permitir el acomodo de las hifas del hongo en la raíz (3131. Plett, J. M. et al. The effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses JA‑responsive genes. Proc. Natl Acad. Sci. USA 111, 8299 (2014)., 3232. Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).).

Finalmente, una vez en el espacio apoplástico y seguido del establecimiento del transporte bidireccional de nutrientes con la planta hospedera, la hifa se protege continuamente de la detección de la defensa de la planta a través de proteínas de enmascaramiento (como las hidrofobinas (3333. Veneault-Fourrey, C. et al. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet. Biol. 72, 168–181 (2014).)) o señuelos (MiSSPs) como tácticas de entretenimiento.

Funcionamiento de las EcM. Toma y transporte de nutrimentos

 

Transporte de nitrógeno (N)

 

Para suplementar los tejidos de las plantas con N, los EcM deben primero tomarlo de su ambiente circundante. Los hongos EcM codifican transportadores para la adquisición de nitrato y amonio del suelo, así como un set de enzimas y transportadores para la utilización de fuentes de N orgánico (3434. Plett, J. M. et al. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genet. Biol. 49, 199–209 (2012). -3636. Nehls, U., and Plassard, C. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol, (2018). 220, 4. doi: http://doi.org/10.1111/nph.15257).

El amonio es la fuente de nitrógeno inorgánico que toman preferentemente los EcM, dado que, como nitrato, se reduce inmediatamente a amonio y requiere más energía (3737. Becquer, A., Guerrero-Galánc, C., Eibensteiner, J. L., Houdinet, G., Bücking, H., Zimmermann, S. D., et al. “The ectomycorrhizal contribution to tree nutrition,” in Advances in Botanical Research, vol. 89 Eds. F. M. Cánovas (Cambridge, MA, USA: Academic Press), (2019).). AMT1 y AMT2 son transportadores de amonio que han sido bien caracterizados en varias especies de EcM, entre las que se encuentran Hebeloma cylindrosporum (3838. Javelle, A., Rodríguez-Pastrana, B. R., Jacob, C., Botton, B., Brun, A., Andre, B., et al. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett, (2001). 505, 3. doi: http://doi.org/10.1016/S0014-5793(01)02802-2., 3939. Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., Brun, A., Andre, B., et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol, (2003), 47, 2. doi: http://doi.org/10.1046/j.1365-2958.2003.03303.x.), Tuber borchii (4040. Montanini, B., Moretto, N., Soragni, E., Percudani, R., and Ottonello, S. A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet. Biol, (2002). 36, 1. doi: http://doi.org/10.1016/S1087-1845(02)00001-4.) and Amanita muscaria (4141. Willmann, A., Weiß, M., and Nehls, U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr. Genet, (2007). 51, 71. doi: http://doi.org/10.1007/s00294-006-0106-x.). Homólogos de estos genes han sido identificados en otros hongos EcM a partir de estudios transcriptómicos (4242. Lucic, E., Fourrey, C., Kohler, A., Martin, F., Chalot, M., and Brun-Jacob, A. A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol, (2008). 180, 2. doi: http://doi.org/10.1111/j.1469-8137.2008.02580.x., 4343. Hortal, S., Plett, K. L., Plett, J. M., Cresswell, T., Johansen, M., Pendall, E., et al. Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J, (2017). 11, 12. doi: http://doi.org/10.1038/ismej.2017.116.). Estos transportadores han sido caracterizados como de alta afinidad y su expresión está regulada en bajas concentraciones de amonio (3939. Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., Brun, A., Andre, B., et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol, (2003), 47, 2. doi: http://doi.org/10.1046/j.1365-2958.2003.03303.x., 4141. Willmann, A., Weiß, M., and Nehls, U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr. Genet, (2007). 51, 71. doi: http://doi.org/10.1007/s00294-006-0106-x.).

También se han encontrado transportadores de nitrato tales como LbNRT2 en Laccaria bicolor (4444. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.) y HcNRT2 en H. cylindrosporum (4545. Jargeat, P., Rekangalt, D., Verner, M. C., Gay, G., Debaud, J. C., Marmeisse, R., et al. Characterization and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet., (2003). 43, 3. doi: http://doi.org/10.1007/s00294-003-0387-2.), y su regulación esta usualmente regida por la enzima nitrato reductasa que se requiere para su asimilación (4646. Kemppainen, M. J., Dupessis, S., Martin, F. M., and Pardo, A. G. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: Gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environ. Microbiol., (2009). 11, 7. doi: http://doi.org/10.1111/j.1462-2920.2009.01912.x., 4444. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.) La toma de nitratos se deprime en presencia de amonio, pero no por la presencia de otras fuentes orgánicas de N, lo que permite la toma simultanea de fuentes orgánicas e inorgánicas (4545. Jargeat, P., Rekangalt, D., Verner, M. C., Gay, G., Debaud, J. C., Marmeisse, R., et al. Characterization and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet., (2003). 43, 3. doi: http://doi.org/10.1007/s00294-003-0387-2., 4444. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.).

Estos hongos también secretan peptidasas para utilizar las proteínas del suelo y presentan transportadores para amino ácidos, oligopéptidos y dipéptidos (3434. Plett, J. M. et al. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genet. Biol. 49, 199–209 (2012). , 4747. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.). La expresión de estos transportadores de N orgánico, así como la secreción de peptidasas, también se reduce en presencia de amonio, lo que indica preferencia fúngica por esta fuente (4848. Bödeker, I. T., Clemmensen, K. E., de Boer, W., Martin, F., Olson, Å., and Lindahl, B. D. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol., (2014). 203, 1. doi: http://doi.org/10.1111/nph.12791., 4747. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.).

Una vez tomado el nitrógeno de suelo, se metaboliza, se almacena y se transporta a otras células del hongo (4747. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.). Una parte de este N es intercambiada con la planta. Para ello se requiere una alta coordinación entre la expresión y actividad de los transportadores del hongo y de la planta.

La mayoría de los estudios han demostrado que el intercambio entre los simbiontes no es reciproco (4949. Corrêa, A., Strasser, R. J., and Martins-Loução, M. A. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18, (2008). 8. doi: http://doi.org/10.1007/s00572-008-0195-0-5252. Hasselquist, N. J., Metcalfe, D. B., Marshall, J. D., Lucas, R. W., and Högberg, P. Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest. Ecology 97, (2016). 3. doi: http://doi.org/10.1890/15-0831.1). La planta asigna al hongo C cuando este se produce en exceso, sin embargo, lo continúa transportando al hongo aun cuando se ve afectado el transporte de N del hongo a la planta (4949. Corrêa, A., Strasser, R. J., and Martins-Loução, M. A. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18, (2008). 8. doi: http://doi.org/10.1007/s00572-008-0195-0). En este sentido, Näsholm et al. (5353. Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell, C., et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol, (2013). 198, 1. doi: http://doi.org/10.1111/nph.12139) encontraron que en las condiciones limitadas de N en un bosque boreal, las plantas podían incrementar la transferencia de C, pero no eran recompensadas con un aumento del transporte de N por parte del hongo.

Transporte de fósforo (P)

 

La mayor parte del P en los bosques se encuentra formando parte de complejos. La mayoría en forma de esteres de fosfato (5454. Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol, (2008). 96, 698–702. doi: http://doi.org/10.1111/j.1365-2745.2008.01384.x). Se considera que los EcM pueden adquirir este P como una molécula completa (5555. Rennenberg, H., and Herschbach, C. Phosphorus nutrition of woody plants: many questions – few answers. Plant Biol, (2013). 15, 785–788. doi: http://doi.org/10.1111/plb.12078). La identificación de tres genes que codifican transportadores de glicerofosfoinositol, soportan esta teoría, sin embargo, no se ha podido demostrar la actividad de estos transportadores (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548), para ello el fosfato debe ser liberado de este enlace por enzimas fosfatasas (5757. Plassard, C., and Dell, B. Phosphorus nutrition of mycorrhizal trees. Tree Physiol, (2010). 30, 1129–1139. doi: http://doi.org/10.1093/treephys/tpq063). Los fitatos es la forma en que se encuentra el P en la mayoría de los ecosistemas incluyendo los bosques (5858. Turner, B. L., Paphazy, M. J., Haygarth, P. M., and Mckelvie, I. D. Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B Biol. Sci., (2002). 357, 449–469. doi: http://doi.org/10.1098/rstb.2001.0837). Es la forma en que se amacena el P en las semillas (5959. Rayboy, V. “Seed phosphorus and the development of low-phytate crops,” in Inositol Phosphates: Linking Agriculture and the Environment, eds B. L. Turner, A. E. Richardson, and E. J. Mullaney (Wallingford: CAB International), (2007). 111–132. ) y se hidroliza durante la germinación por fitasas intracelulares para suministrar P a las plántulas, sin embargo, si este fitato no se hidroliza pasa a formar parte del contenido de P en el suelo. La eficiencia de los organismos en movilizar fitatos de la solución de suelo depende de su habilidad para producir fitasas (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548).

La capacidad de los hongos EcM para liberar fitasas es aún un tema de investigación y hay contradicción en la literatura; algunos estudios han informado EcM con una alta habilidad para esto (6060. Antibus, R. K., Sinsabaugh, R. L., and Linkins, A. E. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can. J. Bot, (1992). 70, 794–801. doi: http://doi.org/10.1139/b92-101, 6161. Mc Elhinney, C., and Mitchell, D.T. Phosphatase activity of four ectomycorrhizal fungi found in a Sitka spruce-Japanese larch plantation in Ireland. Mycol. Res, (1993). 97, 725–732. http://doi.org/10.1016/S0953-7562(09)80154-8), sin la habilidad (6262. Mousain, D., Bousquet, N., and Polard, C. Comparaison des activités phosphatases? Homobasidiomycètes ectomycorhiziens en culture in vitro. Eur. J. For. Pathol, 18, 299–309. http://doi.org/10.1111/j.1439-0329.1988.tb00217.x) o muy baja (6262. Mousain, D., Bousquet, N., and Polard, C. Comparaison des activités phosphatases? Homobasidiomycètes ectomycorhiziens en culture in vitro. Eur. J. For. Pathol, 18, 299–309. http://doi.org/10.1111/j.1439-0329.1988.tb00217.x, 6363. Louche, J., Ali, M.A., Cloutier-Hurteau, B., Sauvage, F.-X., Quiquampoix, H., and Plassard, C. Efficiency of acidphosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol. Ecol, 73, 323–335. http://doi.org/10.1111/j.1574-6941.2010.00899.x) en medios axénicos. La mayoría de los estudios han dejado claro que estos hongos mejoran la nutrición fosforada utilizando otras fuentes además de los fitatos (6464. Richardson, A.E., George, T.S., Jakobsen, I., Simpson, R. “Plant utilization of inositol phosphates,” in Inositol Phosphates: Linking Agriculture and the Environment, eds. B.L. Turner, A.E. Richardson, and E.J. Mullaney (2007). Wallingford: CAB International, 242–260., 6565. Plassard, C., Louche, J., Ali, M.A., Duchemin, M., Legname, E., and Cloutier-Hurteau, B. Diversity in phosphorus mobilization and uptake in ectomycorrhizal fungi. Ann. For. Sci, (2011). 68, 33–43. http://doi.org/10.1007/s13595-010- 0005-7).

La adquisición de P por las EcM se realiza a través de transportadores de la membrana plasmática. El primer transportador de P de las EcM se identificó basándose en la homología de este transportador con los transportadores de P de levaduras (6666. Kothe, E., Muller, D., and Krause, K. Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J. Appl. Bot, (2002). 76, 127–132.). La mayoría de las EcM tienen de tres a cinco transportadores que pertenecen a la subfamilia Pht1 (6767. Karandashov, V., and Bucher, M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, (2005). 10, 22–29. http://doi.org/10.1016/j.tplants.2004.12.003; transportadores del tipo P/H+). Sin embargo, los transportadores codificados por el gen TmPT3 se clasifican como P/Na+ transportadores (Pht2). Este último tipo de transportador ha sido identificado en la levadura Saccharomyces cerevisiae (6868. Martinez, P., and Persson, B. Identification, cloning and characterization of a de-repressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet, (1998). 258, 628–638. http://doi.org/10.1007/s004380050776). Esto sugiere que la eficiencia en la toma de fosforo por la hifa externa de estos hongos está influenciada por el pH del medio circundante (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548). De todos los transportadores de P identificados en EcM, HcPT1.1, HcPT2, y BePT se han caracterizado por su expresión heteróloga a los de levadura (6969. Tatry, M.-V., ElKassis, E., Lambilliotte, R., Corratgé, C., van Aarle, I., Amenc, L. K., et al. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster, (2009). Plant J, 57, 1092–1102. http://doi.org/10.1111/j.1365- 313X.2008.03749.x, 7070. Wang, J., Li, T., Wu, X., and Zhao, Z. Molecular cloning and functional analysis of H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biol, (2014). 118, 453–461. http://doi.org/10.1016/j.funbio.2014.03.003).

Estos transportadores responden de forma diferente a las distintas concentraciones de P. HcPT1.1 se expresa fuertemente cuando las concentraciones de P son muy bajas o existen solo trazas del elemento (6666. Kothe, E., Muller, D., and Krause, K. Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J. Appl. Bot, (2002). 76, 127–132., 7070. Wang, J., Li, T., Wu, X., and Zhao, Z. Molecular cloning and functional analysis of H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biol, (2014). 118, 453–461. http://doi.org/10.1016/j.funbio.2014.03.003), sin embargo, los niveles de transcripto de HcPT2 son independientes de la concentración de P de la solución (6969. Tatry, M.-V., ElKassis, E., Lambilliotte, R., Corratgé, C., van Aarle, I., Amenc, L. K., et al. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster, (2009). Plant J, 57, 1092–1102. http://doi.org/10.1111/j.1365- 313X.2008.03749.x).

La interacción con los hongos micorrízicos está basada en la transferencia bidireccional de nutrimentos. Dado que no hay una continuidad simplástica entre las hifas del hongo EcM y la raíz, el P debe moverse al espacio interfacial apoplástico antes de ser absorbido (7171. Peterson, R.L., and Bonfante, P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil, (1994). 159, 79–88. http://doi.org/10.1007/BF00000097). Este transporte involucra el movimiento pasivo de P y C a través de las membranas del hongo y la planta respectivamente, al especio interfacial y la absorción activa de nutrimentos por ambos simbiontes empleando una bomba protónica (H+/ATP asa) (7272. Smith, S.E., and Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann. Rev. Plant Biol, (2011). 62, 227–250. http://doi.org/10.1146/annurev-arplant-042110-103846). El P se mueve dentro de las hifas para suplir las demandas de la planta (7272. Smith, S.E., and Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann. Rev. Plant Biol, (2011). 62, 227–250. http://doi.org/10.1146/annurev-arplant-042110-103846) y se ha sugerido que este movimiento pasivo de P a través de las membranas fúngicas se asegura por mantener bajas concentraciones de P citosólico, como se ha sugerido para asociaciones MA, manteniendo un gradiente de P a expensas de la degradación de poli-P en el citosol y la toma eficiente a través de transportadores de la membrana plasmática (7373. Bucher, M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol, (2007). 173, 11–26. http://doi.org/10.1111/j.1469-8137.2006. 01935.x, 7474. Javot, H., Pumplin, N., and Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ, (2007). 30, 310–322. http://doi.org/10.1111/j.1365-3040.2006.01617.x). Además, se ha encontrado que este eflujo de P de la hifa puede verse afectado por la presencia en la zona de intercambio de K+, Na+ y carbohidratos (7575. Bücking, H. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations. Mycol. Res, (2004). 108, 599–609. http://doi.org/10.1017/S0953756204009992). De forma alternativa, la salida de P del hongo hacia el apoplasto puede emplear un mecanismo activo que involucra transportadores de P y cuya presencia y actividad se regula por la demanda del hospedero (7676. Cairney, J.W.G., and Smith, S.E. Influence of intracellular phosphorus concentration on phosphate absorption by the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol. Res, (1992). 96, 673–676. http://doi.org/10.1016/S0953-7562(09)80496-6).

En contraste con la simbiosis MA, se conoce poco de los transportadores responsables de la adquisición del P por la planta hospedera (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548). Sin embargo, se ha documentado la expresión y activación de genes Pht1 que están involucrados en la adquisición de P por la planta (7777. Loth-Pereda, V., Orsini, E., Courty, P.-E., Lota, F., Kohler, A., Diss, L., et al. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol, (2011). 156, 2141–2154. http://doi.org/10.1104/pp.111.180646, 7878. Kariman, K., Barker, S.J., Jost, R., Finnegan, P.M., and Tibbett, M. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytol, (2014). 201, 1413–1422. http://doi.org/10.1111/nph.12600). Y, al igual que en la simbiosis MA, se ha observado que en la medida que el hongo EcM suple las necesidades de P de la planta, los transportadores de absorción activa de la solución de suelo de las raíces, comienzan a ser apagados como un mecanismo de economía celular (7979. Javot, H., Pumplin, N., and Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ, (2007). 30, 310–322. http://doi.org/10.1111/j.1365-3040.2006.01617.x)

Perspectivas del uso de las EcM

 

Hay evidencias de que el uso de estos hongos como herramientas para la reforestación podría ser efectiva (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097). Las actividades antrópicas afectan negativamente la abundancia y riqueza de las comunidades EcM, debido a la erosión, cambios en el uso del suelo, introducción de químicos, el fuego y la invasión de plantas no nativas (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097, 8080. Maltz, M. R., Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis. Restor. Ecol, (2015). 15:12231. http://doi.org/10.1111/rec.12231, 8181. Asmelash, F., Bekele, T., and Birhane, E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol, (2016). 7: 1095. http://doi.org/10.3389/fmicb.2016.01095). La inoculación de estos microorganismos podría facilitar el establecimiento y crecimiento de especies de interés en ecosistemas degradados, a la vez que mejoran la calidad del suelo (8282. Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers? Science, (2009). 325, 573–574. http://doi.org/10.1126/science.1172975, 8383. Kalucka, I. L., and Jagodzinski, A. M. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: a review. Dendrobiology, (2016). 76, 91–104. http://doi.org/10.12657/denbio.076.009). Los proyectos de reforestación y restauración de ecosistemas no siempre tienen éxito inminente, sin contar que en la mayoría de los casos son contextos dependientes (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097). Hay un número bajo de estudios que usan las EcM para restaurar bosques boreales y tropicales, sin embargo, hay numerosos informes en la literatura de evidencias que al restaurar los microbiomas, a menudo se recuperan plantas que se consideraban pérdidas para esas comunidades (8484. Koziol, L., Schultz, P. A., House, G. L., Bauer, J. T., Middleton, E. L., and Bever, J. D. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. (2018). Bioscience 68, 996–1006. doi: http://doi.org/10.1093/biosci/biy125), lo que abre una puerta para el uso potencial de estos hongos.

Bibliografía

 

1. Brundrett M, Tedersoo L. Evolutionary history of mycorrhizal symbiosis and global host plant diversity. New Phytologist 220: 1108–1115. 2018.

2. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p.

3. DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci, (2010). 3, 178–181. http://doi.org/10.1038/ngeo756

4. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460, 2008). http://doi.org/10.1126/science.1155365

5. Aerts, R., and Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11:29. (2011). http://doi.org/10.1186/1472-6785-11-29

6. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097

7. B. Meyer-Berthaud, S.E. Scheckler y J. Wendt Archaeopteris es el primer árbol moderno conocido. Nature 446, (1999): 904-907.

8. Tedersoo L & Brundrett M. chapter 19: Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stu. 230, 2017. 407-467. L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230, DOI http://doi.org/10.1007/978-3-319-56363-3_19

9. Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat (2016). 188:E113–E125.

10. B. Wang y Y.L. Qiu. Distribución filogenética y evolución de micorrizas en plantas terrestres. Mycorrhiza '16', (2006). 299-363. Available from: http://mycorrhiza.ag.utk.edu/reviews/rev_wang1.pdf

11. Strullu DG. Les mycorhizes, Handbuch der Pflanzenanatomie. Berlin, 1985.

12. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press, 2008.

13. Mika Tarkka Uwe Nehls, Rüdiger Hampp. Fisiología de la ectomicorriza (ECM). Progreso en Botánica, (2005). Vol 66, Parte 3, 247-276. doi http://doi.org/10.1007/3-540-27043-4_1110.1007/3-540-27043-4_11

14. Francis Martin, Annegret Kohler, Claude Murat, Claire Veneault-Fourrey and David S. Hibbett. Unearthing the roots of ectomycorrhizal symbioses. New Phytologist, 2016. 220: 1012–1030 doi: http://doi.org/10.1111/nph.15076

15. Finlay, R. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot, (2008). 59, 1115–1126.

16. Peterson, R. L. & Massicotte, H. B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82, 1074–1088 (2004).

17. Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).

18. Matheny, P. B. & Hibbett, D. S. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol. 7, 13 (2009).

19. Skrede, I. et al. Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol. Biol. 11, 230 (2011).

20. Yamamoto K, Endo N, Degawa Y, Fukuda M, Yamada A. First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza, 2017. 27: 295–301.

21. Duplessis, S., Courty, P. E., Tagu, D. & Martin, F. Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol. 165, 599–611 (2005).

22. Larsen, P. E. et al. Multi-omics approach identifies molecular mechanisms of plant–fungus mycorrhizal interaction. Front. Plant Sci. 6, 1061 (2016).

23. Luo, Z. B. et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol. 151, 1902–1917 (2009).

24. Tschaplinski, T. J. et al. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol. Plant Microbe Interact. 27, 546–556 (2014).

25. Plett, J. M. et al. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202, 270–286 (2014).

26. Ditengou, F. A. et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6, 6279 (2015).

27. Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant– microorganism interactions. Plant Cell Environ. 36, 909–919 (2013).

28. Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbiosis. New Phytol. 208, 79–87 (2015).

29. Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015).

30. Plett, J. M. & Martin, F. Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 26, 45–50 (2015).

31. Plett, J. M. et al. The effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses JA‑responsive genes. Proc. Natl Acad. Sci. USA 111, 8299 (2014).

32. Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).

33. Veneault-Fourrey, C. et al. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet. Biol. 72, 168–181 (2014).

34. Plett, J. M. et al. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genet. Biol. 49, 199–209 (2012).

35. Casieri, L., Lahmidi, N. A., Doidy, J., Veneault-Fourrey, C., Migeon, A., Bonneau, L., et al. Biotrophic transportome in mutualistic plant fungal interactions. Mycorrhiza 23 (8), 597–625. (2013). doi: http://doi.org/10.1007/s00572-013-0496-9

36. Nehls, U., and Plassard, C. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol, (2018). 220, 4. doi: http://doi.org/10.1111/nph.15257

37. Becquer, A., Guerrero-Galánc, C., Eibensteiner, J. L., Houdinet, G., Bücking, H., Zimmermann, S. D., et al. “The ectomycorrhizal contribution to tree nutrition,” in Advances in Botanical Research, vol. 89 Eds. F. M. Cánovas (Cambridge, MA, USA: Academic Press), (2019).

38. Javelle, A., Rodríguez-Pastrana, B. R., Jacob, C., Botton, B., Brun, A., Andre, B., et al. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett, (2001). 505, 3. doi: http://doi.org/10.1016/S0014-5793(01)02802-2.

39. Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., Brun, A., Andre, B., et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol, (2003), 47, 2. doi: http://doi.org/10.1046/j.1365-2958.2003.03303.x.

40. Montanini, B., Moretto, N., Soragni, E., Percudani, R., and Ottonello, S. A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet. Biol, (2002). 36, 1. doi: http://doi.org/10.1016/S1087-1845(02)00001-4.

41. Willmann, A., Weiß, M., and Nehls, U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr. Genet, (2007). 51, 71. doi: http://doi.org/10.1007/s00294-006-0106-x.

42. Lucic, E., Fourrey, C., Kohler, A., Martin, F., Chalot, M., and Brun-Jacob, A. A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol, (2008). 180, 2. doi: http://doi.org/10.1111/j.1469-8137.2008.02580.x.

43. Hortal, S., Plett, K. L., Plett, J. M., Cresswell, T., Johansen, M., Pendall, E., et al. Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J, (2017). 11, 12. doi: http://doi.org/10.1038/ismej.2017.116.

44. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.

45. Jargeat, P., Rekangalt, D., Verner, M. C., Gay, G., Debaud, J. C., Marmeisse, R., et al. Characterization and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet., (2003). 43, 3. doi: http://doi.org/10.1007/s00294-003-0387-2.

46. Kemppainen, M. J., Dupessis, S., Martin, F. M., and Pardo, A. G. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: Gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environ. Microbiol., (2009). 11, 7. doi: http://doi.org/10.1111/j.1462-2920.2009.01912.x.

47. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.

48. Bödeker, I. T., Clemmensen, K. E., de Boer, W., Martin, F., Olson, Å., and Lindahl, B. D. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol., (2014). 203, 1. doi: http://doi.org/10.1111/nph.12791.

49. Corrêa, A., Strasser, R. J., and Martins-Loução, M. A. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18, (2008). 8. doi: http://doi.org/10.1007/s00572-008-0195-0

50. Albarracín, M. V., Six, J., Houlton, B. Z., and Bledsoe, C. S. (2013). A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 173 (4), 1439–1450. doi: http://doi.org/10.1007/s00442-013-2734-4

51. Valtanen, K., Eissfeller, V., Beyer, F., Hertel, D., Scheu, S., and Polle, A. (2014). Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24, 8. doi: http://doi.org/10.1007/s00572-014-0581-8

52. Hasselquist, N. J., Metcalfe, D. B., Marshall, J. D., Lucas, R. W., and Högberg, P. Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest. Ecology 97, (2016). 3. doi: http://doi.org/10.1890/15-0831.1

53. Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell, C., et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol, (2013). 198, 1. doi: http://doi.org/10.1111/nph.12139

54. Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol, (2008). 96, 698–702. doi: http://doi.org/10.1111/j.1365-2745.2008.01384.x

55. Rennenberg, H., and Herschbach, C. Phosphorus nutrition of woody plants: many questions – few answers. Plant Biol, (2013). 15, 785–788. doi: http://doi.org/10.1111/plb.12078

56. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548

57. Plassard, C., and Dell, B. Phosphorus nutrition of mycorrhizal trees. Tree Physiol, (2010). 30, 1129–1139. doi: http://doi.org/10.1093/treephys/tpq063

58. Turner, B. L., Paphazy, M. J., Haygarth, P. M., and Mckelvie, I. D. Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B Biol. Sci., (2002). 357, 449–469. doi: http://doi.org/10.1098/rstb.2001.0837

59. Rayboy, V. “Seed phosphorus and the development of low-phytate crops,” in Inositol Phosphates: Linking Agriculture and the Environment, eds B. L. Turner, A. E. Richardson, and E. J. Mullaney (Wallingford: CAB International), (2007). 111–132.

60. Antibus, R. K., Sinsabaugh, R. L., and Linkins, A. E. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can. J. Bot, (1992). 70, 794–801. doi: http://doi.org/10.1139/b92-101

61. Mc Elhinney, C., and Mitchell, D.T. Phosphatase activity of four ectomycorrhizal fungi found in a Sitka spruce-Japanese larch plantation in Ireland. Mycol. Res, (1993). 97, 725–732. http://doi.org/10.1016/S0953-7562(09)80154-8

62. Mousain, D., Bousquet, N., and Polard, C. Comparaison des activités phosphatases? Homobasidiomycètes ectomycorhiziens en culture in vitro. Eur. J. For. Pathol, 18, 299–309. http://doi.org/10.1111/j.1439-0329.1988.tb00217.x

63. Louche, J., Ali, M.A., Cloutier-Hurteau, B., Sauvage, F.-X., Quiquampoix, H., and Plassard, C. Efficiency of acidphosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol. Ecol, 73, 323–335. http://doi.org/10.1111/j.1574-6941.2010.00899.x

64. Richardson, A.E., George, T.S., Jakobsen, I., Simpson, R. “Plant utilization of inositol phosphates,” in Inositol Phosphates: Linking Agriculture and the Environment, eds. B.L. Turner, A.E. Richardson, and E.J. Mullaney (2007). Wallingford: CAB International, 242–260.

65. Plassard, C., Louche, J., Ali, M.A., Duchemin, M., Legname, E., and Cloutier-Hurteau, B. Diversity in phosphorus mobilization and uptake in ectomycorrhizal fungi. Ann. For. Sci, (2011). 68, 33–43. http://doi.org/10.1007/s13595-010- 0005-7

66. Kothe, E., Muller, D., and Krause, K. Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J. Appl. Bot, (2002). 76, 127–132.

67. Karandashov, V., and Bucher, M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, (2005). 10, 22–29. http://doi.org/10.1016/j.tplants.2004.12.003

68. Martinez, P., and Persson, B. Identification, cloning and characterization of a de-repressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet, (1998). 258, 628–638. http://doi.org/10.1007/s004380050776

69. Tatry, M.-V., ElKassis, E., Lambilliotte, R., Corratgé, C., van Aarle, I., Amenc, L. K., et al. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster, (2009). Plant J, 57, 1092–1102. http://doi.org/10.1111/j.1365- 313X.2008.03749.x

70. Wang, J., Li, T., Wu, X., and Zhao, Z. Molecular cloning and functional analysis of H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biol, (2014). 118, 453–461. http://doi.org/10.1016/j.funbio.2014.03.003

71. Peterson, R.L., and Bonfante, P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil, (1994). 159, 79–88. http://doi.org/10.1007/BF00000097

72. Smith, S.E., and Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann. Rev. Plant Biol, (2011). 62, 227–250. http://doi.org/10.1146/annurev-arplant-042110-103846

73. Bucher, M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol, (2007). 173, 11–26. http://doi.org/10.1111/j.1469-8137.2006. 01935.x

74. Javot, H., Pumplin, N., and Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ, (2007). 30, 310–322. http://doi.org/10.1111/j.1365-3040.2006.01617.x

75. Bücking, H. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations. Mycol. Res, (2004). 108, 599–609. http://doi.org/10.1017/S0953756204009992

76. Cairney, J.W.G., and Smith, S.E. Influence of intracellular phosphorus concentration on phosphate absorption by the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol. Res, (1992). 96, 673–676. http://doi.org/10.1016/S0953-7562(09)80496-6

77. Loth-Pereda, V., Orsini, E., Courty, P.-E., Lota, F., Kohler, A., Diss, L., et al. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol, (2011). 156, 2141–2154. http://doi.org/10.1104/pp.111.180646

78. Kariman, K., Barker, S.J., Jost, R., Finnegan, P.M., and Tibbett, M. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytol, (2014). 201, 1413–1422. http://doi.org/10.1111/nph.12600

79. Javot, H., Pumplin, N., and Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ, (2007). 30, 310–322. http://doi.org/10.1111/j.1365-3040.2006.01617.x

80. Maltz, M. R., Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis. Restor. Ecol, (2015). 15:12231. http://doi.org/10.1111/rec.12231

81. Asmelash, F., Bekele, T., and Birhane, E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol, (2016). 7: 1095. http://doi.org/10.3389/fmicb.2016.01095

82. Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers? Science, (2009). 325, 573–574. http://doi.org/10.1126/science.1172975

83. Kalucka, I. L., and Jagodzinski, A. M. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: a review. Dendrobiology, (2016). 76, 91–104. http://doi.org/10.12657/denbio.076.009

84. Koziol, L., Schultz, P. A., House, G. L., Bauer, J. T., Middleton, E. L., and Bever, J. D. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. (2018). Bioscience 68, 996–1006. doi: http://doi.org/10.1093/biosci/biy125

Cultivos Tropicales Vol. 45, No. 4, octubre-diciembre 2024, ISSN: 1819-4087
 
Bibliographic review

An approaching to Ectomycorrhizae world

 

iDEduardo J. Pérez Ortega*✉:eddymalo@gmail.com


Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32700

 

*Autor for correspondence. eddymalo@gmail.com

Abstract

Ectomycorrhizae are generally considered the most advanced symbiotic association between higher plants and fungi, because although they involve only 3 % of seed plants, all plants species are woody species; trees and shrubs, including most fruit trees. Therefore the ectomycorrizal association is important worldwide due to the large area covered by plants and due to its economic value as source of wood. In this review, references are made to the characteristics of the association, taking into account the morphology of the symbiosis, the mechanisms used to establish the association and how they influence plant nutrition.

Key words: 
functioning, nitrogen, phosphorus transport

Introduction

 

Mycorrhizal fungi are widespread in most terrestrial habitats and form a mutualistic symbiotic association with more than 80 % of plant species (11. Brundrett M, Tedersoo L. Evolutionary history of mycorrhizal symbiosis and global host plant diversity. New Phytologist 220: 1108–1115. 2018. ). There are two types of mycorrhizae depending on the relationship that the hyphae establish with plant root cells. In this sense, endomycorrhizae form their associations within the root cells of the host plant, whereas ectomycorrhizae associate externally (22. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p. ).

Arbuscular mycorrhizas are associated with 80 % of plants, whereas ectomycorrhizae (EcM) occur between certain fungal species and the roots of about 2 % of vascular plant species. Generally in woody plants, including species of the genera Betula, Dipterocarpus, Myrtus, Fagus, Salix, Pinus and also species of the genus Quercus, such as oaks and Rosa (22. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p. ). However, due to the processes of anthropic degradation suffered by the forest planet systems (33. DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci, (2010). 3, 178–181. http://doi.org/10.1038/ngeo756), which leads to the decrease of biodiversity and therefore to the decrease of the services they provide (44. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460, 2008). http://doi.org/10.1126/science.1155365, 55. Aerts, R., and Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11:29. (2011). http://doi.org/10.1186/1472-6785-11-29), these associations have become vitally important. In tropical and temperate forests, most timber plant species are obligate symbionts of ectomycorrhizae, which provide nutrients and water in exchange for photosynthetically fixed carbon (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097).

Development

 

Deforestation is one of the greatest challenges facing the earth with impacts that can range from destroying the habitat of different animals and plants, limiting genetic diversity by isolating populations and making it difficult for some species to survive and reproduce. Deforestation releases amounts of carbon into the atmosphere that contribute to global warming, changing weather patterns, which directly impacts agriculture and water sources. Forests play an important role in the planet's water and temperature regulation cycle, so maintaining forest health would allow for improved living conditions. Reforestation projects are essential to combat climate change and preserve biodiversity. In these projects Ectomycorrhizae use is from vital importance since these microorganisms play an important role in alleviating biotic and abiotic stresses on plants. In this review we propose to approach to the ectomycorrhizae world and learn about advantages they provide to their host plants.

Evolution

 

In the Devonian, about 380 million years ago, lignin appeared, which allowed some plant species to reach large dimensions (77. B. Meyer-Berthaud, S.E. Scheckler y J. Wendt Archaeopteris es el primer árbol moderno conocido. Nature 446, (1999): 904-907. ) when decomposing, the tissues of these plants provided large amounts of wood waste. At about the same time, basidiomycetes and ascomycetes fungi, which could decompose lignin, differed from glomeromycetes, which already formed arbuscular mycorrhizae, according to taxonomic analysis of EcM lines. However, on at least five occasions EcM evolved from non-mycorrhizal or facultative mycorrhizal ancestors (Coccoloba, Persicaria vivipara, Gymnopodium and Pisonieae within the Caryophyllales and Kobresia within the Poales) (88. Tedersoo L & Brundrett M. chapter 19: Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stu. 230, 2017. 407-467. L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230, DOI http://doi.org/10.1007/978-3-319-56363-3_19). This approach is in contradiction with some authors (99. Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat (2016). 188:E113–E125. ) who suggest that only AM can be the ancestors of EcM; however, the latter author excludes the groups mentioned in parentheses (88. Tedersoo L & Brundrett M. chapter 19: Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stu. 230, 2017. 407-467. L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230, DOI http://doi.org/10.1007/978-3-319-56363-3_19).

In any case, the plant species that evolved to form symbiosis with these fungi had the ability to colonize substrates unfavorable to arbuscular mycorrhizae, i.e., substrates rich in phenols and tannins, which allowed them to accumulate organic matter and preserve this association (1010. B. Wang y Y.L. Qiu. Distribución filogenética y evolución de micorrizas en plantas terrestres. Mycorrhiza '16', (2006). 299-363. Available from: http://mycorrhiza.ag.utk.edu/reviews/rev_wang1.pdf).

Characteristics of EcM

 

As its name indicates, ectomycorrhizal symbiosis does not involve the mycelium entering the plant root cells. The fungal hyphae envelop the host plant root in a pattern of intercellular penetration, where the hyphae form a network between cortical cells called Hartig's network (1111. Strullu DG. Les mycorhizes, Handbuch der Pflanzenanatomie. Berlin, 1985. , 1212. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press, 2008.). This network constitutes the site of exchange between the plant, which provides organic carbon, and the fungus, which provides various nutrients and water (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097). Unlike the hyphae of mycorrhizal fungi, which are coenocytic (cytoplasm common to many nuclei, without septa), the hyphae of ectomycorrhizal fungi are septate.

Ectomycorrhizal roots are morphologically different from non-ectomycorrhizal roots. First, the production of hairs is inhibited (1313. Mika Tarkka Uwe Nehls, Rüdiger Hampp. Fisiología de la ectomicorriza (ECM). Progreso en Botánica, (2005). Vol 66, Parte 3, 247-276. doi http://doi.org/10.1007/3-540-27043-4_1110.1007/3-540-27043-4_11). The effectiveness of these structures is far exceeded by that of mycelium. Second, the cortex is hypertrophic, which increases the space available for the Hartig network. Third, the roots are more branched and have less longitudinal growth (1414. Francis Martin, Annegret Kohler, Claude Murat, Claire Veneault-Fourrey and David S. Hibbett. Unearthing the roots of ectomycorrhizal symbioses. New Phytologist, 2016. 220: 1012–1030 doi: http://doi.org/10.1111/nph.15076).

In EcM, hyphae attack the epidermal cells of the emerging lateral roots. This hyphae proliferate and differentiate into a series of hyphal layers to form a psudoparenchymatous tissue known as Harting' sheath or mantle. This structure contains water and air channels that transport nutrients to symbiotic cells and develops around cortical cells in angiosperms and both cortical and epidermal cells in gymnosperms (1212. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge, UK: Academic Press, 2008.).

Hartig's mantle (resulting in a complex maze of hyphal branching and thus a large surface area) forms an efficient interface for bidirectional transport of nutrients across the cells forming the host surface (1515. Finlay, R. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot, (2008). 59, 1115–1126. , 1616. Peterson, R. L. & Massicotte, H. B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82, 1074–1088 (2004). ).

Fungal species involved

 

Although arbuscular mycorrhizae are the most common form of mycorrhizal symbiosis, the number of fungal species involved remains limited (approximately 200) compared with the number of ectomycorrhizal fungal species, which amount, according to some authors, to tens of thousands, distributed in a few hundred genera (1717. Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010). -1919. Skrede, I. et al. Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol. Biol. 11, 230 (2011). ).

Most of the fungal species in ectomycorrhizal associations are part of the basidiomycetes, ascomycetes, and some of the genus Endogone (Mucoromycotina) (2020. Yamamoto K, Endo N, Degawa Y, Fukuda M, Yamada A. First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza, 2017. 27: 295–301. ).

In contrast to arbuscular fungi, which have not yet been successful in axenic culture, some species of ectomycorrhizal fungi are easy to cultivate. This is particularly the case for Boletus, Amanita and Lacaria. Other genera, such as Tuber (truffles) and Lactarius, are more difficult to cultivate, while others remain elusive (22. J. André Fortin, Christian Plenchette & Yves Piché, Les mycorhizes, la nouvelle révolution verte, Éditions MultiMondes, Éditions Quae, 2008, 131 Plantilla:Nb p. ).

Mechanism of infection by EcM

 

A model has been described by which EcM fungi colonize host plants. This model contains several stages.

First: the host plant has a restricted set of genes that are induced during the preinfection phase and during colonization of the apoplastic space (2121. Duplessis, S., Courty, P. E., Tagu, D. & Martin, F. Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol. 165, 599–611 (2005). , 2222. Larsen, P. E. et al. Multi-omics approach identifies molecular mechanisms of plant–fungus mycorrhizal interaction. Front. Plant Sci. 6, 1061 (2016). ).

Second: EcM fungi can alter root metabolism so that hyphae are accommodated in the root, similar to what has been observed for MA symbiosis (2323. Luo, Z. B. et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol. 151, 1902–1917 (2009). , 2424. Tschaplinski, T. J. et al. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol. Plant Microbe Interact. 27, 546–556 (2014). ).

Prior to physical contact, the colonizing hyphae alter endogenous auxin metabolism, root signal molecules, and cellular responses of the colonized plant through the use of mechanisms that include a variety of diffusible molecules (such as plant auxins and fungal sesquiterpenes) such that more roots are produced, providing the fungus with a wide colonization area (2525. Plett, J. M. et al. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202, 270–286 (2014). , 2626. Ditengou, F. A. et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6, 6279 (2015). , 2727. Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant– microorganism interactions. Plant Cell Environ. 36, 909–919 (2013). ).

Third: gene function associated with defense responses during the early stages of EcM invasion is attenuated by the secretion of a fungal effector called MiSSP. In the nucleus, MiSSP interacts with the transcriptional repressor JAZ 6 (JASMONATE ZIM DOMAIN) which is the key regulator of the jasmonate signaling pathway. In the rest of the cell, when jasmonate levels are low or absent, JAZ6 inhibits transcriptional activation of genes responsible for jasmonic acid synthesis, similar to what occurs in MA symbiosis with the effector protein Sp7, which allows the EcM fungus to colonize the root while “escaping” or subverting plant defense (2525. Plett, J. M. et al. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202, 270–286 (2014). , 2828. Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbiosis. New Phytol. 208, 79–87 (2015). ).

Molecular studies have shown that these effector proteins are secreted into host plant cells and translocate to the nucleus where they suppress the expression of defense genes by physically interacting with their target proteins (2929. Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015). ). These mechanisms of weakening defense responses are crucial to achieve hyphal penetration into the apoplastic spaces (2828. Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbiosis. New Phytol. 208, 79–87 (2015). , 3030. Plett, J. M. & Martin, F. Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 26, 45–50 (2015).). On the other hand, the host plant responds to develop its ectomycorrhizal interaction by secreting its own effector protein and chemical signals in response to fungal effectors (3030. Plett, J. M. & Martin, F. Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 26, 45–50 (2015).).

Fourth: the fungal effectors, by regulating wall-degrading enzymes as part of the plant defense system, modify cell-cell contact to allow the fungal hyphae to become lodged in the root (3131. Plett, J. M. et al. The effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses JA‑responsive genes. Proc. Natl Acad. Sci. USA 111, 8299 (2014)., 3232. Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).).

Finally, once in the apoplastic space and followed by the establishment of bidirectional nutrient transport with the host plant, the hypha continuously shields itself from detection by plant defense through masking proteins (such as hydrophobins (3333. Veneault-Fourrey, C. et al. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet. Biol. 72, 168–181 (2014).)) or decoys (MiSSPs) as entertainment tactics.

Functioning of EcMs. Nutrient uptake and transport

 

N transport

 

To supplement plant tissues with N, EcM must first take it from their surrounding environment. EcM fungi encode transporters for the acquisition of nitrate and ammonium from the soil, as well as a set of enzymes and transporters for the utilization of organic N sources (3434. Plett, J. M. et al. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genet. Biol. 49, 199–209 (2012). -3636. Nehls, U., and Plassard, C. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol, (2018). 220, 4. doi: http://doi.org/10.1111/nph.15257).

Ammonium is the preferred source of inorganic nitrogen taken up by EcMs, since, as nitrate, it is immediately reduced to ammonium and requires more energy (3737. Becquer, A., Guerrero-Galánc, C., Eibensteiner, J. L., Houdinet, G., Bücking, H., Zimmermann, S. D., et al. “The ectomycorrhizal contribution to tree nutrition,” in Advances in Botanical Research, vol. 89 Eds. F. M. Cánovas (Cambridge, MA, USA: Academic Press), (2019).). AMT1 and AMT2 are ammonium transporters that have been well characterized in several EcM species, including Hebeloma cylindrosporum (3838. Javelle, A., Rodríguez-Pastrana, B. R., Jacob, C., Botton, B., Brun, A., Andre, B., et al. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett, (2001). 505, 3. doi: http://doi.org/10.1016/S0014-5793(01)02802-2., 3939. Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., Brun, A., Andre, B., et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol, (2003), 47, 2. doi: http://doi.org/10.1046/j.1365-2958.2003.03303.x.), Tuber borchii (4040. Montanini, B., Moretto, N., Soragni, E., Percudani, R., and Ottonello, S. A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet. Biol, (2002). 36, 1. doi: http://doi.org/10.1016/S1087-1845(02)00001-4.) and Amanita muscaria (4141. Willmann, A., Weiß, M., and Nehls, U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr. Genet, (2007). 51, 71. doi: http://doi.org/10.1007/s00294-006-0106-x.). Homologs of these genes have been identified in other EcM fungi from transcriptomic studies (4242. Lucic, E., Fourrey, C., Kohler, A., Martin, F., Chalot, M., and Brun-Jacob, A. A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol, (2008). 180, 2. doi: http://doi.org/10.1111/j.1469-8137.2008.02580.x., 4343. Hortal, S., Plett, K. L., Plett, J. M., Cresswell, T., Johansen, M., Pendall, E., et al. Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J, (2017). 11, 12. doi: http://doi.org/10.1038/ismej.2017.116.). These transporters have been characterized as high affinity and their expression is up-regulated at low ammonium concentrations (3939. Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., Brun, A., Andre, B., et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol, (2003), 47, 2. doi: http://doi.org/10.1046/j.1365-2958.2003.03303.x., 4141. Willmann, A., Weiß, M., and Nehls, U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr. Genet, (2007). 51, 71. doi: http://doi.org/10.1007/s00294-006-0106-x.).

Nitrate transporters such as LbNRT2 have also been found in Laccaria bicolor (4444. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.) and HcNRT2 in H. cylindrosporum (4545. Jargeat, P., Rekangalt, D., Verner, M. C., Gay, G., Debaud, J. C., Marmeisse, R., et al. Characterization and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet., (2003). 43, 3. doi: http://doi.org/10.1007/s00294-003-0387-2.), and their regulation is usually governed by the enzyme nitrate reductase which is required for their assimilation (4646. Kemppainen, M. J., Dupessis, S., Martin, F. M., and Pardo, A. G. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: Gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environ. Microbiol., (2009). 11, 7. doi: http://doi.org/10.1111/j.1462-2920.2009.01912.x., 4444. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.). Nitrate uptake is depressed in the presence of ammonium, but not by the presence of other organic N sources, allowing simultaneous uptake from organic and inorganic sources (4545. Jargeat, P., Rekangalt, D., Verner, M. C., Gay, G., Debaud, J. C., Marmeisse, R., et al. Characterization and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet., (2003). 43, 3. doi: http://doi.org/10.1007/s00294-003-0387-2., 4444. Kemppainen, M. J., Alvarez Crespo, M. C., and Pardo, A. G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by L-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Environ. Microbiol, (2010). Rep. 2, 4. doi: http://doi.org/10.1111/j.1758-2229.2009.00111.x.).

These fungi also secrete peptidases to utilize soil proteins and present transporters for amino acids, oligopeptides, and dipeptides (3434. Plett, J. M. et al. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genet. Biol. 49, 199–209 (2012). , 4747. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.). The expression of these organic N transporters, as well as the secretion of peptidases, is also reduced in the presence of ammonium, indicating fungal preference for this source (4848. Bödeker, I. T., Clemmensen, K. E., de Boer, W., Martin, F., Olson, Å., and Lindahl, B. D. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol., (2014). 203, 1. doi: http://doi.org/10.1111/nph.12791., 4747. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.).

Once soil nitrogen is taken up, it is metabolized, stored, and transported to other fungal cells (4747. Stuart, E. K., and Plett, K. L. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. Front. Plant Sci., (2020). 10:1658. doi: http://doi.org/10.3389/fpls.2019.01658.). Part of this N is exchanged with the plant. This requires high coordination between the expression and activity of fungal and plant transporters.

Most studies have shown that the exchange between symbionts is not reciprocal (4949. Corrêa, A., Strasser, R. J., and Martins-Loução, M. A. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18, (2008). 8. doi: http://doi.org/10.1007/s00572-008-0195-0-5252. Hasselquist, N. J., Metcalfe, D. B., Marshall, J. D., Lucas, R. W., and Högberg, P. Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest. Ecology 97, (2016). 3. doi: http://doi.org/10.1890/15-0831.1). The plant allocates C to the fungus when it is produced in excess, however, it continues to transport it to the fungus even when N transport from the fungus to the plant is affected (4949. Corrêa, A., Strasser, R. J., and Martins-Loução, M. A. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18, (2008). 8. doi: http://doi.org/10.1007/s00572-008-0195-0). In this regard, some authors found that under N-limited conditions in a boreal forest, plants could increase C transfer, but were not rewarded with increased N transport by the fungus (5353. Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell, C., et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol, (2013). 198, 1. doi: http://doi.org/10.1111/nph.12139).

Phosphorus transport

 

Most of the P in forests is found as part of complexes. Most of it is in the form of phosphate esters (5454. Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol, (2008). 96, 698–702. doi: http://doi.org/10.1111/j.1365-2745.2008.01384.x). It is considered that EcMs can acquire this P as a whole molecule (5555. Rennenberg, H., and Herschbach, C. Phosphorus nutrition of woody plants: many questions – few answers. Plant Biol, (2013). 15, 785–788. doi: http://doi.org/10.1111/plb.12078). The identification of three genes encoding glycerophosphoinositol transporters supports this theory; however, the activity of these transporters has not been demonstrated (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548), for which phosphate must be released from this bond by phosphatase enzymes (5757. Plassard, C., and Dell, B. Phosphorus nutrition of mycorrhizal trees. Tree Physiol, (2010). 30, 1129–1139. doi: http://doi.org/10.1093/treephys/tpq063). Phytate is the form in which P is found in most ecosystems including forests (5858. Turner, B. L., Paphazy, M. J., Haygarth, P. M., and Mckelvie, I. D. Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B Biol. Sci., (2002). 357, 449–469. doi: http://doi.org/10.1098/rstb.2001.0837). It is the form in which P is stored in seeds (5959. Rayboy, V. “Seed phosphorus and the development of low-phytate crops,” in Inositol Phosphates: Linking Agriculture and the Environment, eds B. L. Turner, A. E. Richardson, and E. J. Mullaney (Wallingford: CAB International), (2007). 111–132. ) and is hydrolyzed during germination by intracellular phytases to supply P to seedlings; however, if this phytate is not hydrolyzed it becomes part of the P content of the soil. The efficiency of organisms in mobilizing phytate from the soil solution depends on their ability to produce phytases (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548).

The ability of EcM fungi to release phytases is still a subject of research and there is contradiction in the literature; some studies have reported EcM with a high ability for this (6060. Antibus, R. K., Sinsabaugh, R. L., and Linkins, A. E. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can. J. Bot, (1992). 70, 794–801. doi: http://doi.org/10.1139/b92-101, 6161. Mc Elhinney, C., and Mitchell, D.T. Phosphatase activity of four ectomycorrhizal fungi found in a Sitka spruce-Japanese larch plantation in Ireland. Mycol. Res, (1993). 97, 725–732. http://doi.org/10.1016/S0953-7562(09)80154-8), without the ability (6262. Mousain, D., Bousquet, N., and Polard, C. Comparaison des activités phosphatases? Homobasidiomycètes ectomycorhiziens en culture in vitro. Eur. J. For. Pathol, 18, 299–309. http://doi.org/10.1111/j.1439-0329.1988.tb00217.x), or very low (6262. Mousain, D., Bousquet, N., and Polard, C. Comparaison des activités phosphatases? Homobasidiomycètes ectomycorhiziens en culture in vitro. Eur. J. For. Pathol, 18, 299–309. http://doi.org/10.1111/j.1439-0329.1988.tb00217.x, 6363. Louche, J., Ali, M.A., Cloutier-Hurteau, B., Sauvage, F.-X., Quiquampoix, H., and Plassard, C. Efficiency of acidphosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol. Ecol, 73, 323–335. http://doi.org/10.1111/j.1574-6941.2010.00899.x) in axenic media. Most studies have made it clear that these fungi enhance phosphorus nutrition using sources other than phytates (6464. Richardson, A.E., George, T.S., Jakobsen, I., Simpson, R. “Plant utilization of inositol phosphates,” in Inositol Phosphates: Linking Agriculture and the Environment, eds. B.L. Turner, A.E. Richardson, and E.J. Mullaney (2007). Wallingford: CAB International, 242–260., 6565. Plassard, C., Louche, J., Ali, M.A., Duchemin, M., Legname, E., and Cloutier-Hurteau, B. Diversity in phosphorus mobilization and uptake in ectomycorrhizal fungi. Ann. For. Sci, (2011). 68, 33–43. http://doi.org/10.1007/s13595-010- 0005-7).

P acquisition by EcMs takes place via plasma membrane transporters. The first P transporter of EcMs was identified based on the homology of this transporter with yeast P transporters (6666. Kothe, E., Muller, D., and Krause, K. Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J. Appl. Bot, (2002). 76, 127–132.). Most EcMs have three to five transporters belonging to the Pht1 subfamily (6767. Karandashov, V., and Bucher, M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, (2005). 10, 22–29. http://doi.org/10.1016/j.tplants.2004.12.003; P/H+-type transporters). However, the transporters encoded by the TmPT3 gene are classified as P/Na+ transporters (Pht2). The latter type of transporter has been identified in the yeast Saccharomyces cerevisiae (6868. Martinez, P., and Persson, B. Identification, cloning and characterization of a de-repressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet, (1998). 258, 628–638. http://doi.org/10.1007/s004380050776). This suggests that the efficiency of phosphorus uptake by the external hyphae of these fungi is influenced by the pH of the surrounding medium (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548). From all the P transporters identified in EcM, HcPT1.1, HcPT2, and BePT have been characterized by their heterologous expression to those of yeast (6969. Tatry, M.-V., ElKassis, E., Lambilliotte, R., Corratgé, C., van Aarle, I., Amenc, L. K., et al. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster, (2009). Plant J, 57, 1092–1102. http://doi.org/10.1111/j.1365- 313X.2008.03749.x, 7070. Wang, J., Li, T., Wu, X., and Zhao, Z. Molecular cloning and functional analysis of H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biol, (2014). 118, 453–461. http://doi.org/10.1016/j.funbio.2014.03.003).

These transporters respond differently to different P concentrations. HcPT1.1 is strongly expressed when P concentrations are very low or only trace amounts of the element are present (6666. Kothe, E., Muller, D., and Krause, K. Different high affinity phosphate uptake systems of ectomycorrhizal Tricholoma species in relation to substrate specificity. J. Appl. Bot, (2002). 76, 127–132., 7070. Wang, J., Li, T., Wu, X., and Zhao, Z. Molecular cloning and functional analysis of H+-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China. Fungal Biol, (2014). 118, 453–461. http://doi.org/10.1016/j.funbio.2014.03.003), however, HcPT2 transcript levels are independent of solution P concentration (6969. Tatry, M.-V., ElKassis, E., Lambilliotte, R., Corratgé, C., van Aarle, I., Amenc, L. K., et al. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster, (2009). Plant J, 57, 1092–1102. http://doi.org/10.1111/j.1365- 313X.2008.03749.x).

The interaction with mycorrhizal fungi is based on bidirectional nutrient transfer. Because there is no symplastic continuity between EcM fungal hyphae and the root, P must move into the apoplastic interfacial space before being taken up (7171. Peterson, R.L., and Bonfante, P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil, (1994). 159, 79–88. http://doi.org/10.1007/BF00000097). This transport involves passive movement of P and C across the fungal and plant membranes, respectively, into the interfacial space and active nutrient uptake by both symbionts employing a proton pump (H+/ATP loop) (7272. Smith, S.E., and Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann. Rev. Plant Biol, (2011). 62, 227–250. http://doi.org/10.1146/annurev-arplant-042110-103846). P moves within hyphae to supply plant demands (7272. Smith, S.E., and Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann. Rev. Plant Biol, (2011). 62, 227–250. http://doi.org/10.1146/annurev-arplant-042110-103846) and it has been suggested that this passive movement of P across fungal membranes is ensured by maintaining low cytosolic P concentrations, as suggested for AM associations, maintaining a P gradient at the expense of poly-P degradation in the cytosol and efficient uptake through plasma membrane transporters (7373. Bucher, M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol, (2007). 173, 11–26. http://doi.org/10.1111/j.1469-8137.2006. 01935.x, 7474. Javot, H., Pumplin, N., and Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ, (2007). 30, 310–322. http://doi.org/10.1111/j.1365-3040.2006.01617.x). In addition, it has been found that this P efflux from the hypha can be affected by the presence in the exchange zone of K+, Na+, and carbohydrates (7575. Bücking, H. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations. Mycol. Res, (2004). 108, 599–609. http://doi.org/10.1017/S0953756204009992). Alternatively, P efflux from the fungus to the apoplast may employ an active mechanism involving P transporters whose presence and activity is regulated by host demand (7676. Cairney, J.W.G., and Smith, S.E. Influence of intracellular phosphorus concentration on phosphate absorption by the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol. Res, (1992). 96, 673–676. http://doi.org/10.1016/S0953-7562(09)80496-6).

In contrast to AM symbiosis, little is known about the transporters responsible for P acquisition by the host plant (5656. Becquer, A., Trap, J., Irshad, U., Ali, M. A., Plassard, C. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, (2014). 1-7. DOI: http://doi.org/10.3389/fpls.2014.00548). However, the expression and activation of Pht1 genes involved in P acquisition by the plant have been documented (7777. Loth-Pereda, V., Orsini, E., Courty, P.-E., Lota, F., Kohler, A., Diss, L., et al. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol, (2011). 156, 2141–2154. http://doi.org/10.1104/pp.111.180646, 7878. Kariman, K., Barker, S.J., Jost, R., Finnegan, P.M., and Tibbett, M. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytol, (2014). 201, 1413–1422. http://doi.org/10.1111/nph.12600). As in AM symbiosis, it has been observed that as the EcM fungus supplies the P needs of the plant, active uptake transporters from the root soil solution begin to be turned off as a cellular economy mechanism (7979. Javot, H., Pumplin, N., and Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ, (2007). 30, 310–322. http://doi.org/10.1111/j.1365-3040.2006.01617.x).

Prospects for EcM use

 

There is evidence that the use of these fungi as tools for reforestation could be effective (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097). Anthropogenic activities negatively affect the abundance and richness of EcM communities due to erosion, changes in land use, introduction of chemicals, fire, and invasion of non-native plants (8080. Maltz, M. R., Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis. Restor. Ecol, (2015). 15:12231. http://doi.org/10.1111/rec.12231, 8181. Asmelash, F., Bekele, T., and Birhane, E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol, (2016). 7: 1095. http://doi.org/10.3389/fmicb.2016.01095, 66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097). Inoculation of these microorganisms could facilitate the establishment and growth of species of interest in degraded ecosystems while improving soil quality (8282. Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers? Science, (2009). 325, 573–574. http://doi.org/10.1126/science.1172975, 8383. Kalucka, I. L., and Jagodzinski, A. M. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: a review. Dendrobiology, (2016). 76, 91–104. http://doi.org/10.12657/denbio.076.009). Reforestation and ecosystem restoration projects are not always imminently successful, not to mention that in most cases they are context dependent (66. Policelli N, Horton TR, Hudon AT, Patterson TR and Bhatnagar JM. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 3:97, (2020). http://doi.org/10.3389/ffgc.2020.00097). There are a low number of studies using EcM to restore boreal and tropical forests, however, there are numerous reports in the literature of evidence that restoring microbiomes often recovers plants that were considered lost to these communities (8484. Koziol, L., Schultz, P. A., House, G. L., Bauer, J. T., Middleton, E. L., and Bever, J. D. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. (2018). Bioscience 68, 996–1006. doi: http://doi.org/10.1093/biosci/biy125), which opens a door for the potential use of these fungi.