Cultivos Tropicales Vol. 46, No. 1, enero-marzo 2025, ISSN: 1819-4087
Código QR
Cu-ID: https://cu-id.com/2050/v46n1e05
Artículo original

Caracterización química y evaluación de la actividad biológica de extractos de Spirulina

 

iDAnaysa Gutierrez Almeida*✉:anaysa@inca.edu.cu

iDMiriam de la C. Núñez Vázquez

iDYanelis Reyes Guerrero

iDGeydi Pérez Domínguez

iDLisbel Martínez González


Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700

 

*Autor para correspondencia: anaysa@inca.edu.cu

Resumen

El incremento en el rendimiento y la productividad de los cultivos, sin afectar el medio ambiente, es uno de los desafíos que experimentan los agricultores en la época actual. El empleo de extractos de Spirulina (Arthrospira platensis) como bioestimulante vegetal, es una de las opciones más viables a utilizar con estos fines. El objetivo del presente trabajo fue la obtención, caracterización y evaluación de la actividad biológica de algunos extractos alcohólicos de Spirulina. Para ello, se prepararon los extractos a partir de Spirulina en polvo utilizando etanol como solvente en dos concentraciones (70 y 90 %), dos relaciones masa-solvente(1:20 y 1:10) y dos tiempos de maceración (10 y 21 días) y se determinó el contenido de proteínas, fenoles y flavonoides de cada uno mediante determinaciones espectrofotométricas. La actividad biológica fue evaluada utilizando un ensayo de germinación de semillas de arroz a partir de la imbibición de semillas durante 24 h y el proceso de germinación se llevó a cabo en placas Petri con agua destilada durante siete días. Los resultados obtenidos de la caracterización química permitirán adecuar los parámetros de extracción en función de los componentes que se quieran favorecer y el efecto fisiológico que se quiera lograr, puesto que, la concentración de proteínas, fenoles y flavonoides en los extractos influyó significativamente en el porcentaje final de germinación de las semillas de arroz.

Palabras clave: 
Arthrospira platensis, composición, germinación, arroz

Recibido: 08/7/2023; Aceptado: 12/5/2024

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.

Contribución de los autores: Conceptualización- Miriam de la C. Núñez Vázquez, Yanelis Reyes Guerrero, Anaysa Gutierrez Almeida. Investigación- Anaysa Gutierrez Almeida, Miriam de la C. Núñez Vázquez, Yanelis Reyes Guerrero, Geydi Pérez Domínguez, Lisbel Martínez González. Supervisión- Miriam de la C. Núñez Vázquez, Yanelis Reyes Guerrero. Metodología - Anaysa Gutierrez Almeida, Miriam de la C. Núñez Vázquez, Yanelis Reyes Guerrero, Geydi Pérez Domínguez, Lisbel Martínez González. Escritura del borrador inicial - Anaysa Gutierrez Almeida. Revisión y arreglo del borrador inicial- Yanelis Reyes Guerrero, Miriam de la C. Núñez Vázquez, Anaysa Gutierrez Almeida. Escritura y edición final- Miriam de la C. Núñez Vázquez, Yanelis Reyes Guerrero, Anaysa Gutierrez Almeida. Revisión y aprobación del último borrador y curación de datos- Miriam de la C. Núñez Vázquez, Yanelis Reyes Guerrero, Anaysa Gutierrez Almeida.

CONTENIDO

Introducción

 

En años recientes, los productos naturales a base de algas y cianobacterias se están utilizando como sustitutos agroquímicos y han adquirido gran importancia por los beneficios que estos tienen en los cultivos y por el reducido impacto que causan al medio ambiente. Se ha comprobado que su aplicación aumenta determinadas expresiones metabólicas y fisiológicas en las plantas. Dichos productos, como son los extractos de algas y cianobacterias, generalmente, se obtienen por el uso de un solvente y un proceso de extracción adecuado, se encuentran principalmente comercializados como biofertilizantes por su alto contenido de macro y micronutrientes o como bioestimulantes por contener, entre otros compuestos, hormonas promotoras del crecimiento vegetal (11. Dmytryk A, Samoraj M, Moustakas K, Witek-Krowiak A, Chojnacka K. Bioactive fatty acids and compounds from Spirulina (Arthrospira) platensis: Potential as biostimulants for plant growth. Sustain Chem Pharm [Internet]. 2022 Dec 1 [cited 2024 Nov 25];30:100899. Available from: https://www.sciencedirect.com/science/article/pii/S2352554122003035 -44. Plaza BM, Gómez Serrano C, Acién Fernández FG, Jiménez Becker S. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. Journal of Applied Phycology. 2018 Feb 19 [cited 2024 Nov 25]; Available from: https://repositorio.ual.es/handle/10835/8381 ).

La Spirulina (Arthrospira platensis), una de las más ampliamente utilizadas para estos fines, es una cianobacteria microscópica azul-verdosa, donde el color azul procede de la ficocianina presente y el verde de la clorofila y estuvo considerada hasta hace muy poco tiempo como una microalga. Deriva su nombre de la naturaleza espiral de sus filamentos y se ha convertido en objeto de estudio científico debido a su biodisponibilidad de nutrientes, ya que entre el 85-95 % son asimilables (55. Belaustegui I. Espirulina: propiedades y beneficios - Jesús Sierra [Internet]. 2023 [cited 2024 Nov 25]. Available from: https://jesussierra.com/espirulina/ ).

Posee, aproximadamente, del 60-70 % de su masa seca en proteínas con alta biodisponibilidad, también contiene clorofilas, así como compuestos fenólicos y flavonoides que pueden actuar como antioxidantes naturales (66. Kaur M, Bhatia S, Bayram I, Decker EA, Phutela UG. Oxidative stability of emulsions made with self-extracted oil from euryhaline microalgae Spirulina and Scenedesmus. Algal Res [Internet]. 2023 Sep 1 [cited 2024 Nov 25];75:103280. Available from: https://www.sciencedirect.com/science/article/pii/S2211926423003132 -88. Munawaroh H, Fathur R, Gumilar G, Aisyah S, Yuliani G, Mudzakir A, et al. Characterization and physicochemical properties of chlorophyll extract from Spirulina sp. J Phys Conf Ser [Internet]. 2019 Nov 1;1280:022013. Available from: https://www.researchgate.net/publication/337443355_Characterization_and_physicochemical_properties_of_chlorophyll_extract_from_Spirulina_sp ). Es el organismo terrestre y acuático de mayor contenido proteico y mejor aminograma y digestibilidad (77. Manrich A, de Oliveira JE, Martins MA, Capparelli ML. Physicochemical and Thermal Characterization of the Spirulina platensis. Journal of Agricultural Science and Technology [Internet]. 2020;298-307. Available from: http://www.davidpublisher.com/Public/uploads/Contribute/601b72a5d8536.pdf ); por lo que es muy utilizada como fuente de aminoácidos para el hombre, los animales y para las plantas. Además, contiene ácidos grasos poliinsaturados esenciales y vitaminas, así como xantinas, ficobiliproteínas (99. Papadaki S, Kyriakopoulou K, Tzovenis I, Krokida M. Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov Food Sci Emerg Technol [Internet]. 2017 Dec 1 [cited 2024 Nov 25];44:217-23. Available from: https://www.sciencedirect.com/science/article/pii/S1466856416305264 ,1010. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina ), carbohidratos, nitrógeno, fósforo, potasio, calcio, hierro, manganeso, zinc (1010. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina ). Presenta, también, un alto contenido en vitaminas B12, B1, B2, B6 y E, biotina, ácido pantoténico, ácido fólico, inositol y niacina (1010. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina ), compuestos halogenados, policétidos, agar agar, ácido algínico y carragenina (1111. Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy [Internet]. 2019 Apr [cited 2024 May 14];9(4):192. Available from: https://www.mdpi.com/2073-4395/9/4/192 ), gran riqueza en α- y ß carotenos (77. Manrich A, de Oliveira JE, Martins MA, Capparelli ML. Physicochemical and Thermal Characterization of the Spirulina platensis. Journal of Agricultural Science and Technology [Internet]. 2020;298-307. Available from: http://www.davidpublisher.com/Public/uploads/Contribute/601b72a5d8536.pdf ,1212. Wuang SC, Khin MC, Chua PQD, Luo YD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res [Internet]. 2016 Apr 1 [cited 2024 Nov 25];15:59-64. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416300480 ), ficocianina, considerables cantidades de ácido α-linolénico (ácido graso poliinsaturado con diferentes efectos beneficiosos) (1313. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci [Internet]. 2019 May 1 [cited 2024 Nov 25];26(4):709-22. Available from: https://www.sciencedirect.com/science/article/pii/S1319562X17302784 ), una alta concentración de fitohormonas, oligoelementos, antioxidantes y polisacáridos, por lo tanto, es un complemento biológico excelente (1414. L A, P K, G SB. Evaluation of Spirulina platensis as microbial inoculants to enhanced protein levels in Amaranthus gangeticus. Afr J Agric Res [Internet]. 2016 Apr 14 [cited 2024 Nov 25];11(15):1353-60. Available from: http://academicjournals.org/journal/AJAR/article-abstract/1221D1E58055 ).

Los efectos que la aplicación de Spirulina ha provocado en diferentes especies vegetales, han sido informados por diversos autores. Así, en Amaranthus gangeticus, se ha encontrado que la imbibición de las semillas y la aplicación foliar de extractos de Spirulina incrementaron los niveles de proteínas (1414. L A, P K, G SB. Evaluation of Spirulina platensis as microbial inoculants to enhanced protein levels in Amaranthus gangeticus. Afr J Agric Res [Internet]. 2016 Apr 14 [cited 2024 Nov 25];11(15):1353-60. Available from: http://academicjournals.org/journal/AJAR/article-abstract/1221D1E58055 ) y de hierro en las plantas (1515. Anitha L, Kalpana P, Bramari SG. BIOFORTIFICATION OF AMARANTHUS GANGETICUS USING SPIRULINA PLATENSIS AS MICROBIAL INOCULANT TO ENHANCE IRON LEVELS. Int J Res Appl Nat Soc Sci [Internet]. 2014 [cited 2024 Nov 25];2:103-10. Available from: https://www.academia.edu/7025447/BIOFORTIFICATION_OF_AMARANTHUS_GANGETICUS_USING_SPIRULINA_PLATENSIS_AS_MICROBIAL_INOCULANT_TO_ENHANCE_IRON_LEVELS ). De igual forma, se informó que la imbibición de semillas de Phaseolus aureus y Solanum lycopersicum L., en extractos de esta cianobacteria, aumentó los niveles de Zn en las plantas (1616. Anitha L, Bramari GS, Kalpana P. Effect of supplementation of Spirulina platensis to enhance the zinc status in plants of Amaranthus gangeticus, Phaseolus aureus and tomato. Advances in Bioscience and Biotechnology. 2016;7(6):289-99. Available from: https://www.researchgate.net/publication/304608048_Effect_of_Supplementation_of_Spirulina_platensis_to_Enhance_the_Zinc_Status_in_Plants_of_Amaranthus_gangeticus_Phaseolus_aureus_and_Tomato ). En la especie Solanum melongena L., la aplicación de un fertilizante comercial a base de Spirulina incrementó el rendimiento de las plantas sin afectar los niveles foliares de N, P, K y Na ni los indicadores de calidad del mismo (1717. Dias G, Rocha R, Araújo J, Lima J, Guedes W. Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semina Ciênc Agrár [Internet]. 2016 Dec 14;37(6):3893. Available from: https://www.researchgate.net/publication/311851452_Growth_yield_and_postharvest_quality_in_eggplant_produced_under_different_foliar_fertilizer_Spirulina_platensis_treatments ). Además, se comprobó que el extracto de Spirulina platensis tiene efectos positivos en la germinación de semillas de trigo y cebada, así como en las longitudes de raíces y tallos (1818. Akgül F. Effect of Spirulina platensis (Gomont) Geitler Extract on Seed Germination of Wheat and Barley. Alinteri J Agric Sci [Internet]. 2019 Dec 31 [cited 2024 Nov 26];34(2):148-53. Available from: https://dergipark.org.tr/en/pub/alinterizbd/issue/51098/639000 ).

En Cuba, se cultiva la Spirulina desde hace más de tres décadas; sin embargo, su uso con fines agrícolas ha sido muy limitado y no se dispone de información acerca de la utilización de extractos con estos fines. Por esta razón, el objetivo del presente trabajo fue la obtención, caracterización y evaluación de la actividad biológica de algunos extractos alcohólicos de Spirulina.

Materiales y métodos

 

El experimento se desarrolló en el Departamento de Fisiología y Bioquímica Vegetal del Instituto Nacional de Ciencias Agrícolas (INCA). Los extractos se prepararon a partir de Spirulina en polvo proveniente de la Empresa Génix de LABIOFAM S.A., usando Etanol (Etanol absoluto M= 46,07) como solvente.

Para la elaboración de los extractos fueron estudiadas dos concentraciones de etanol (70 y 90 %), dos relaciones masa-solvente (1:20 y 1:10) y dos tiempos de maceración (10 y 21 días). Los extractos obtenidos fueron los siguientes:

  1. Relación masa-solvente1:20 utilizando EtOH 90 % durante 21 días

  2. Relación masa-solvente1:20 utilizando EtOH 90 % durante 10 días

  3. Relación masa-solvente1:20 utilizando EtOH 70 % durante 21 días

  4. Relación masa-solvente1:20 utilizando EtOH 70 % durante 10 días

  5. Relación masa-solvente1:10 utilizando EtOH 90 % durante 21 días

  6. Relación masa-solvente1:10 utilizando EtOH 90 % durante 10 días

  7. Relación masa-solvente1:10 utilizando EtOH 70 % durante 21 días

  8. Relación masa-solvente1:10 utilizando EtOH 70 % durante 10 días

Caracterización química de los extractos

 

La caracterización química de los extractos se realizó mediante métodos de análisis bioquímicos con determinaciones espectrofotométricas de proteínas, flavonoides y fenoles a partir de la representación de la curva patrón correspondiente a cada técnica con la medición de cuatro repeticiones de absorbancias de cada patrón. Fueron obtenidas tres curvas de calibración, donde se graficaron valores de absorbancia de cada patrón en función de la concentración (1919. Silva A de S e, de Magalhães WT, Moreira LM, Rocha MVP, Bastos AKP. Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Res [Internet]. 2018 Nov 1 [cited 2024 Nov 26];35:178-84. Available from: https://www.sciencedirect.com/science/article/pii/S2211926418301668 ).

La cuantificación de proteínas de cada extracto se realizó mediante el método de Micro-Lowry (2020. Waterborg JH. The Lowry Method for Protein Quantitation. In: Walker JM, editor. The Protein Protocols Handbook [Internet]. Totowa, NJ: Humana Press; 2009 [cited 2024 Nov 26]. p. 7-10. Available from: https://doi.org/10.1007/978-1-59745-198-7_2 ), el contenido de fenoles según el método de Folin-Ciocalteau (2121. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic [Internet]. 1965 Jan 1 [cited 2024 Nov 26];16(3):144-58. Available from: https://www.ajevonline.org/content/16/3/144 ) y los flavonoides se determinaron utilizando un método espectrofotométrico (2222. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000 Sep;72(1-2):35-42.).

Evaluación de la actividad biológica de los extractos

 

Para determinar si la composición de proteínas, fenoles y flavonoides influían en la actividad biológica de los extractos, se les realizó la evaluación biológica a los extractos de menor (A) y mayor (B) contenido de dichos compuestos. Para esto, se realizó un experimento en el que se embebieron semillas de arroz cv. INCA LP-7, durante 24 h, con diferentes concentraciones (5; 1; 0,5; 0,05; 0,005 mg L-1) de los extractos A y B.

Para la germinación, las semillas se colocaron en placas Petri (20 semillas por placa y cuatro placas por tratamiento) que contenían agua destilada. Los tratamientos conformados fueron los siguientes:

  1. Imbibición con agua destilada (Control)

  2. Imbibición con 5 mg L-1 del extracto A

  3. Imbibición con 1 mg L-1 del extracto A

  4. Imbibición con 0,5 mg L-1 del extracto A

  5. Imbibición con 0,05 mg L-1 del extracto A

  6. Imbibición con 0,005 mg L-1 del extracto A

  7. Imbibición con 5 mg L-1 del extracto B

  8. Imbibición con 1 mg L-1 del extracto B

  9. Imbibición con 0,5 mg L-1 del extracto B

  10. Imbibición con 0,05 mg L-1 del extracto B

  11. Imbibición con 0,005 mg L-1 del extracto B

Las placas se colocaron en la cámara de germinación a 28 °C por siete días, evaluándose el número de semillas germinadas por placa a las 24, 48, 72 y 144 horas, con lo que se determinó el porcentaje final de germinación y la velocidad de germinación, y a los diez días, la masa seca de las radículas (25 radículas por tratamiento, cinco muestras de cinco radículas cada una).

Para el procesamiento de los datos, se calcularon las medias, las desviaciones estándar y los intervalos de confianza a α=0,05, mediante el programa Excel.

Resultados y discusión

 

Caracterización química de los extractos

 

En la Tabla 1 se muestra el contenido de proteínas, fenoles y flavonoides presentes en los extractos analizados.

Tabla 1.  Concentración de proteínas solubles totales, fenoles y flavonoides de los diferentes extractos alcohólicos de Spirulina
Extractos° Proteínas (μg μL-1) Fenoles (μg μL-1) Flavonoides (μg μL-1)
1 5,5663 ± 1,1764 0,6513 ± 0,0420 3,1232 ± 0,1822*
2 6,7619 ± 0,8062 0,6255 ± 0,0339 2,9988 ± 0,1405*
3 26,4102 ± 1,7561* 1,3309 ± 0,0184* 1,8640 ± 0,1030
4 13,0988 ± 2,2376* 0,7109 ± 0,0181 0,6049 ± 0,0849
5 10,2957 ± 1,9360 0,8627 ± 0,0389 4,4198 ± 0,1523*
6 7,7716 ± 0,5229 0,7421 ± 0,0426 3,3150 ± 0,0842*
7 17,8415 ± 0,3408* 1,1201 ± 0,0181* 1,8506 ± 0,0719
8 21,0298 ± 2,4684* 1,0707 ± 0,0244* 1,4563 ± 0,0473

1. Relación masa-solvente1:20 utilizando EtOH 90% durante 21 días. 2. Relación masa-solvente1:20 utilizando EtOH 90 % durante 10 días. 3. Relación masa-solvente1:20 utilizando EtOH 70 % durante 21 días. 4. Relación masa-solvente1:20 utilizando EtOH 70 % durante 10 días. 5. Relación masa-solvente1:10 utilizando EtOH 90% durante 21 días. 6. Relación masa-solvente1:10 utilizando EtOH 90 % durante 10 días.7. Relación masa-solvente1:10 utilizando EtOH 70 % durante 21 días. 8. Relación masa-solvente1:10 utilizandoEtOH 70 % durante 10 días. *Medias que difieren significativamente del tratamiento control según intervalo de confianza a α=0,05

Como se muestra en la Tabla 1, las mayores concentraciones de proteínas se obtuvieron cuando se empleó EtOH al 70 % (extractos 3, 4, 7, 8), independientemente de la relación masa-solvente utilizada, por lo que una menor concentración de etanol favorece la presencia de proteínas en los extractos. Nótese que con la relación masa-solvente 1:20 y una maceración de 10 días (extracto 4), que constituye el extracto más económico, se obtuvo un buen contenido de proteínas; lo que sugiere que este extracto pudiera ser utilizado para la biofortificación de los cultivos.

Con el contenido de fenoles, ocurrió algo similar, mientras que las mayores concentraciones de flavonoides se obtuvieron en los extractos obtenidos con EtOH al 90 % (extractos 1, 2, 5, 6), independientemente, de la relación masa-solvente y el tiempo de maceración.

De esto se desprende, que la extracción con EtOH 70 % favoreció el contenido de proteínas solubles y de fenoles totales de los extractos, lo cual es lógico ya que al tener una cantidad de agua mayor se favorece la polaridad. Según Cepoi y cols (2009) (2323. Cepoi L, Ludmila R, Vera M, Angela C, Chiriac T, Sadovnic D. Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia measured by various methods. Analele Univ Din Oradea Fasc Biol [Internet]. 2009 Nov 1;TOM XVI. Available from: https://www.researchgate.net/publication/40422973_Antioxidative_activity_of_ethanol_extracts_from_Spirulina_platensis_and_Nostoc_linckia_measured_by_various_methods ), la extracción de compuestos antioxidantes de biomasa de Spirulina fue más efectiva con una solución de etanol al 70 %. Igualmente, la actividad antioxidante se vio favorecida en extractos de Spirulina obtenidos con el etanol como solvente, por encima de otros solventes como H20, metanol y éter de petróleo (2424. Varsale A, Singh V, Mali S, Parihar P, Mane R. Phytochemical analysis, antioxidant and antifungal activity of different solvent extracts of Spirulina platensis collected from Rankala Lake, Kolhapur, Maharashtra. Phytochem Anal [Internet]. 2019;10(1):36-42. Available from: https://storage.unitedwebnetwork.com/files/521/ba6ab112b0e28c164f459c61b622daf1.pdf ). Por otra parte, la extracción de compuestos fenólicos totales se vio favorecida en extractos preparados con 50 % de etanol sobre los que se prepararon con 50 % de dimetil sulfóxido (2525. Martí-Quijal FJ, Ramon-Mascarell F, Pallarés N, Ferrer E, Berrada H, Phimolsiripol Y, et al. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl Sci [Internet]. 2021 Jan [cited 2024 Nov 26];11(16):7629. Available from: https://www.mdpi.com/2076-3417/11/16/7629 ).

La maceración con la solución de EtOH 90 % incrementó el contenido de flavonoides totales, lo cual pudiera ser útil para favorecer cultivos sometidos a estrés ambiental, ya que se conoce el papel de estos compuestos en incrementar la actividad antioxidante (2626. Agustina S, Aidha NN, Oktarina E, Kurniati NF. Evaluation of Antioxidant and Wound Healing Activities of Spirulina sp. Extract. Egypt J Chem [Internet]. 2021 Aug 1 [cited 2024 Nov 26];64(8):4601-10. Available from: https://ejchem.journals.ekb.eg/article_162338.html ). Otros autores han obtenido altas concentraciones de flavonoides, alcaloides y saponinas de biomasa de Spirulina con la extracción con etanol absoluto (2727. Yuniati R, Zainuri M, Kusumaningrum H. Qualitative Tests of Secondary Metabolite Compounds in Ethanol Extract of Spirulina platensis from Karimun Jawa Sea, Indonesia. Biosaintifika J Biol Biol Educ [Internet]. 2020 Dec 25 [cited 2024 Nov 26];12(3):343-9. Available from: https://journal.unnes.ac.id/nju/biosaintifika/article/view/23153 ).

Es interesante destacar que las concentraciones de los compuestos evaluados no tuvieron diferencias significativas cuando se comparan los dos tiempos de maceración empleados. El factor tiempo se hace más significativo cuando se utilizan métodos como la ultrasonicación o la extracción asistida por microondas, no tanto la maceración (2828. Kong S, Wiratni W, Budiman A. Protein Extraction from Spirulina platensis by Using Ultrasound Assisted Extraction: Effect of Solvent Types and Extraction Time. Key Eng Mater [Internet]. 2021 Jan 11;872:33-7. Available from: https://www.researchgate.net/publication/348402116_Protein_Extraction_from_Spirulina_platensis_by_Using_Ultrasound_Assisted_Extraction_Effect_of_Solvent_Types_and_Extraction_Time ).

La presencia de proteínas, fenoles, flavonoides, etc. en los extractos de Spirulina, favorece la germinación de semillas, la formación de plantas sanas y equilibradas, logran un mayor rendimiento del cultivo, mayor vida poscosecha, mayor vigor de hoja, menos incidencia de enfermedades y mayor resistencia frente a estrés por factores climáticos o sequías (2929. Rahim A, Çakir C, Ozturk M, Şahin B, Soulaimani A, Sibaoueih M, et al. Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South Afr J Bot [Internet]. 2021 Sep 1 [cited 2024 Sep 23];141:235-42. Available from: https://www.sciencedirect.com/science/article/pii/S0254629921001770 -3131. López-Padrón I, Martínez-González L, Pérez-Domínguez G, Reyes-Guerrero Y, Núñez-Vázquez M, Cabrera-Rodríguez JA. Las algas y sus usos en la agricultura. Una visión actualizada. Cultiv Trop [Internet]. 2020 Aug 5 [cited 2024 May 14];41(2):e10-e10. Available from: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1554 ). Se debe tener en cuenta, que en los extractos, como se mencionó anteriormente, hay otros muchos compuestos que no se determinaron en este trabajo y que pueden influir en la actividad biológica de los mismos.

No obstante, con esta caracterización química limitada, se decidió seleccionar los extractos 1 y 3 como los extractos de menor y mayor contenido de proteínas y fenoles respectivamente, para evaluar su actividad biológica como estimulador de la germinación de semillas de arroz.

Actividad biológica de los extractos

 

La velocidad y el porcentaje final de germinación de las semillas de cada uno de los tratamientos se muestran en la Tabla 2. Como se puede apreciar, hubo influencia en el porcentaje final de germinación con dos concentraciones (5 y 0,5 mg L-1) del extracto 3 aunque no hubo diferencias significativas en la velocidad de germinación, por lo que la mayor concentración de proteínas solubles y fenoles totales que presentó dicho extracto incrementó significativamente el porcentaje final de germinación de las semillas de arroz cv. INCA LP-7.

Tabla 2.  Efecto de diferentes concentraciones de dos extractos alcohólicos de Spirulina en la germinación de semillas de arroz cv. INCA LP-7 (Medias ±intervalos de confianza)
Concentraciones mg L-1 Extractos alcohólicos de Spirulina Porcentaje final de germinación Velocidad de germinación (semillas germinadas día-1)
0 - 72,50 ± 2,83 11,95±0,39
5 Extracto 1 72,50 ± 6,33 10,95±1,59
1 75,00 ± 8,95 10,62±0,92
0,5 82,50 ± 10,20 12,91±1,29
0,05 78,33 ± 5,66 12,05±0,83
0,005 75,00 ± 4,00 11,08±0,78
5 Extracto 3 82,50 ± 6,33* 12,40±1,42
1 71,25 ± 4,69 9,29±0,80
0,5 83,33 ± 71,48* 11,44±0,92
0,05 68,75 ± 14,07 10,04±2,52
0,005 67,50 ± 8,49 9,54±0,82

Medias que difieren significativamente del tratamiento control según intervalo de confianza a α=0,05. Extracto 1: Relación masa-solvente1:20 utilizando EtOH 90% durante 21 días. Extracto 3: Relación masa-solvente1:20 utilizando EtOH 70 % durante 21 días.

Tabla 3.  Efecto de diferentes concentraciones de dos extractos alcohólicos de Spirulina en la masa seca de radículas de plántulas de arroz cv. INCA LP-7 (Medias ±intervalos de confianza)
Concentraciones mg L-1 Extractos alcohólicos de Spirulina Masa seca de radículas (mg planta-1)
0 - 4,37 ± 0,54
5 Extracto 1 4,00 ± 0,23
1 4,50 ± 0,69
0,5 4,02 ± 0,57
0,05 4,15 ± 0,34
0,005 4,44 ± 0,69
5 Extracto 3 4,73 ± 0,35
1 3,92 ± 0,60
0,5 3,81 ± 0,30
0,05 4,82 ± 0,49
0,005 4,04 ± 0,27

Extracto 1: Relación masa-solvente1:20 utilizando EtOH 90 % durante 21 días. Extracto 3: Relación masa-solvente1:20 utilizando EtOH 70 % durante 21 días

Los resultados de la masa seca de radículas mostraron que no hubo diferencias significativas entre tratamientos; sin embargo, la inmersión de las semillas en 5 mg L-1 y 0,05 mg L-1 del extracto 3, incrementaron en 8,2 y 10,3 % la masa seca de las radículas, respectivamente. Nótese que el tratamiento con 5 mg L-1 de este extracto fue uno de los que incrementó significativamente el porcentaje final de germinación; confirmando la influencia que una mayor concentración de proteínas solubles y fenoles totales ejerció en la germinación y crecimiento inicial de las plántulas de arroz.

Las microalgas y sus extractos son estimulantes naturales que aceleran la germinación de las semillas y aumentan el vigor de las plántulas cuando se emplean en dosis relativamente bajas (3232. Sivalingam KM. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. J. Algal Biomass Utln. 2020;11(2):34-42. Available from: https://storage.unitedwebnetwork.com/files/521/4ca5cd59fe556a59877dcb110401ee19.pdf ). Varios estudios describen sus efectos beneficiosos en el porcentaje, índice y tiempo medio de germinación, así como en la longitud de la plúmula y de la radícula. Estos resultados se atribuyen a la activación de rutas enzimáticas claves para la fisiología de la germinación. Por ejemplo, la α-amilasa es una enzima sintetizada en la capa de aleurona y su expresión génica está regulada por las giberelinas. Esta enzima es responsable de la movilización de sustancias de reserva, como el almidón, desde el endospermo para apoyar el crecimiento y diferenciación del embrión (3333. Oliveira GE, Pinho RGV, Andrade T de, Pinho ÉV de RV, Santos CD dos, Veiga AD. Physiological quality and amylase enzyme expression in maize seeds. Ciênc E Agrotecnologia [Internet]. 2013 Feb [cited 2024 Sep 23];37:40-8. Available from: https://www.scielo.br/j/cagro/a/JJpGvzwnJkQ9Zx5JLQRN9xR/?lang=en ). Para demostrar esta hipótesis, recientemente, se informaron los efectos significativos que un extracto de Spirulina platensis ejercieron en el cultivo del maní (Arachis hypogaea L.), en indicadores tales como porcentaje de germinación de las semillas, longitud de la radícula y contenidos de proteínas y carbohidratos (3232. Sivalingam KM. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. J. Algal Biomass Utln. 2020;11(2):34-42. Available from: https://storage.unitedwebnetwork.com/files/521/4ca5cd59fe556a59877dcb110401ee19.pdf ). En otro estudio, se informó sobre la mejora del vigor, la calidad y la germinación de semillas de frijol negro (Vigna mungo L.), correlacionado con el incremento del ácido giberélico y la actividad de la enzima α-amilasa, al ser embebidas en un extracto de Spirulina platensis al 1,5 % durante 3 horas (3434. Field Crop Research Institute, VAAS, Vietnam, Thinh NQ. Influences of seed priming with Spirulina platensisextract on seed quality properties in black gram (Vigna mungo L.). Vietnam J Sci Technol Eng [Internet]. 2021 Mar 31 [cited 2024 Nov 26];63(1):36-41. Available from: https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/388/268 ). Por otra parte, se encontró que la utilización de un extracto metanólico (0,25 %) favoreció casi todos los indicadores de crecimiento, el contenido de nutrientes, los componentes de rendimiento y el nivel de fitohormonas de Lupinus luteus (3535. Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman MEH. Spirulina platensis Biofertilization for Enhancing Growth, Photosynthetic Capacity and Yield of Lupinus luteus. Agriculture [Internet]. 2022 Jun [cited 2024 Nov 26];12(6):781. Available from: https://www.mdpi.com/2077-0472/12/6/781 ). En otra investigación realizada se encontró que al tratar semillas de tomate con 0,2 g/100 mL de un extracto de Spirulina, se obtuvo una tasa de germinación de 86,7 % (3636. Iuliana Neag E, Stupar Z, Roman C. EFFECT OF SPIRULINA SPP. EXTRACTS ON TOMATO AND ONION SEED GERMINATION |. AGRICULTURA [Internet]. 2022 [cited 2024 Nov 26];124(3-4). Available from: https://journals.usamvcluj.ro/index.php/agricultura/article/view/14437 ), además concentraciones de 25 y 50 % de dicho extracto tuvieron un efecto positivo en la germinación de semillas y el desarrollo de plántulas de lechuga (3737. Akgül F, Akgül R. The effect of Spirulina platensis (Gomont) Geitler extracts on seed germination of Lactuca. Alınteri Zirai Bilim Derg [Internet]. 2019 Dec 31 [cited 2024 Nov 26];34(2):148-53. Available from: https://ageconsearch.umn.edu/record/296790?v=pdf ).

Los resultados obtenidos en esta investigación, aunque son preliminares aún, mostraron la importancia que tiene la concentración de etanol y el tiempo de maceración en la composición y actividad como bioestimulante agrícola de los extractos de Spirulina; por lo que es necesario continuar profundizando en este sentido, con vistas a la obtención de extractos activos biológicamente que puedan ser utilizados satisfactoriamente en la agricultura.

Conclusiones

 
  • La caracterización química de los extractos alcohólicos de Spirulina permitió seleccionar dos extractos para la evaluación de su actividad biológica.

  • Una mayor concentración de proteínas solubles y fenoles de los extractos favorece la germinación y la masa seca de las radículas de plántulas de arroz.

Recomendaciones

 
  • Continuar caracterizando los extractos y evaluar la actividad biológica de los mismos en otros cultivos.

Bibliografía

 

1. Dmytryk A, Samoraj M, Moustakas K, Witek-Krowiak A, Chojnacka K. Bioactive fatty acids and compounds from Spirulina (Arthrospira) platensis: Potential as biostimulants for plant growth. Sustain Chem Pharm [Internet]. 2022 Dec 1 [cited 2024 Nov 25];30:100899. Available from: https://www.sciencedirect.com/science/article/pii/S2352554122003035

2. Kumar A, Ramamoorthy D, Verma DK, Kumar A, Kumar N, Kanak KR, et al. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus [Internet]. 2022 Jun 16 [cited 2024 Nov 25];6:100070. Available from: https://www.sciencedirect.com/science/article/pii/S277242712200033X

3. Das P, Khan S, Chaudhary AK, AbdulQuadir M, Thaher MI, Al-Jabri H. Potential Applications of Algae-Based Bio-fertilizer. In: Biofertilizers for Sustainable Agriculture and Environment. Springer; 2019. p. 41-65.

4. Plaza BM, Gómez Serrano C, Acién Fernández FG, Jiménez Becker S. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. Journal of Applied Phycology. 2018 Feb 19 [cited 2024 Nov 25]; Available from: https://repositorio.ual.es/handle/10835/8381

5. Belaustegui I. Espirulina: propiedades y beneficios - Jesús Sierra [Internet]. 2023 [cited 2024 Nov 25]. Available from: https://jesussierra.com/espirulina/

6. Kaur M, Bhatia S, Bayram I, Decker EA, Phutela UG. Oxidative stability of emulsions made with self-extracted oil from euryhaline microalgae Spirulina and Scenedesmus. Algal Res [Internet]. 2023 Sep 1 [cited 2024 Nov 25];75:103280. Available from: https://www.sciencedirect.com/science/article/pii/S2211926423003132

7. Manrich A, de Oliveira JE, Martins MA, Capparelli ML. Physicochemical and Thermal Characterization of the Spirulina platensis. Journal of Agricultural Science and Technology [Internet]. 2020;298-307. Available from: http://www.davidpublisher.com/Public/uploads/Contribute/601b72a5d8536.pdf

8. Munawaroh H, Fathur R, Gumilar G, Aisyah S, Yuliani G, Mudzakir A, et al. Characterization and physicochemical properties of chlorophyll extract from Spirulina sp. J Phys Conf Ser [Internet]. 2019 Nov 1;1280:022013. Available from: https://www.researchgate.net/publication/337443355_Characterization_and_physicochemical_properties_of_chlorophyll_extract_from_Spirulina_sp

9. Papadaki S, Kyriakopoulou K, Tzovenis I, Krokida M. Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov Food Sci Emerg Technol [Internet]. 2017 Dec 1 [cited 2024 Nov 25];44:217-23. Available from: https://www.sciencedirect.com/science/article/pii/S1466856416305264

10. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina

11. Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy [Internet]. 2019 Apr [cited 2024 May 14];9(4):192. Available from: https://www.mdpi.com/2073-4395/9/4/192

12. Wuang SC, Khin MC, Chua PQD, Luo YD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res [Internet]. 2016 Apr 1 [cited 2024 Nov 25];15:59-64. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416300480

13. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci [Internet]. 2019 May 1 [cited 2024 Nov 25];26(4):709-22. Available from: https://www.sciencedirect.com/science/article/pii/S1319562X17302784

14. L A, P K, G SB. Evaluation of Spirulina platensis as microbial inoculants to enhanced protein levels in Amaranthus gangeticus. Afr J Agric Res [Internet]. 2016 Apr 14 [cited 2024 Nov 25];11(15):1353-60. Available from: http://academicjournals.org/journal/AJAR/article-abstract/1221D1E58055

15. Anitha L, Kalpana P, Bramari SG. BIOFORTIFICATION OF AMARANTHUS GANGETICUS USING SPIRULINA PLATENSIS AS MICROBIAL INOCULANT TO ENHANCE IRON LEVELS. Int J Res Appl Nat Soc Sci [Internet]. 2014 [cited 2024 Nov 25];2:103-10. Available from: https://www.academia.edu/7025447/BIOFORTIFICATION_OF_AMARANTHUS_GANGETICUS_USING_SPIRULINA_PLATENSIS_AS_MICROBIAL_INOCULANT_TO_ENHANCE_IRON_LEVELS

16. Anitha L, Bramari GS, Kalpana P. Effect of supplementation of Spirulina platensis to enhance the zinc status in plants of Amaranthus gangeticus, Phaseolus aureus and tomato. Advances in Bioscience and Biotechnology. 2016;7(6):289-99. Available from: https://www.researchgate.net/publication/304608048_Effect_of_Supplementation_of_Spirulina_platensis_to_Enhance_the_Zinc_Status_in_Plants_of_Amaranthus_gangeticus_Phaseolus_aureus_and_Tomato

17. Dias G, Rocha R, Araújo J, Lima J, Guedes W. Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semina Ciênc Agrár [Internet]. 2016 Dec 14;37(6):3893. Available from: https://www.researchgate.net/publication/311851452_Growth_yield_and_postharvest_quality_in_eggplant_produced_under_different_foliar_fertilizer_Spirulina_platensis_treatments

18. Akgül F. Effect of Spirulina platensis (Gomont) Geitler Extract on Seed Germination of Wheat and Barley. Alinteri J Agric Sci [Internet]. 2019 Dec 31 [cited 2024 Nov 26];34(2):148-53. Available from: https://dergipark.org.tr/en/pub/alinterizbd/issue/51098/639000

19. Silva A de S e, de Magalhães WT, Moreira LM, Rocha MVP, Bastos AKP. Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Res [Internet]. 2018 Nov 1 [cited 2024 Nov 26];35:178-84. Available from: https://www.sciencedirect.com/science/article/pii/S2211926418301668

20. Waterborg JH. The Lowry Method for Protein Quantitation. In: Walker JM, editor. The Protein Protocols Handbook [Internet]. Totowa, NJ: Humana Press; 2009 [cited 2024 Nov 26]. p. 7-10. Available from: https://doi.org/10.1007/978-1-59745-198-7_2

21. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic [Internet]. 1965 Jan 1 [cited 2024 Nov 26];16(3):144-58. Available from: https://www.ajevonline.org/content/16/3/144

22. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000 Sep;72(1-2):35-42.

23. Cepoi L, Ludmila R, Vera M, Angela C, Chiriac T, Sadovnic D. Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia measured by various methods. Analele Univ Din Oradea Fasc Biol [Internet]. 2009 Nov 1;TOM XVI. Available from: https://www.researchgate.net/publication/40422973_Antioxidative_activity_of_ethanol_extracts_from_Spirulina_platensis_and_Nostoc_linckia_measured_by_various_methods

24. Varsale A, Singh V, Mali S, Parihar P, Mane R. Phytochemical analysis, antioxidant and antifungal activity of different solvent extracts of Spirulina platensis collected from Rankala Lake, Kolhapur, Maharashtra. Phytochem Anal [Internet]. 2019;10(1):36-42. Available from: https://storage.unitedwebnetwork.com/files/521/ba6ab112b0e28c164f459c61b622daf1.pdf

25. Martí-Quijal FJ, Ramon-Mascarell F, Pallarés N, Ferrer E, Berrada H, Phimolsiripol Y, et al. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl Sci [Internet]. 2021 Jan [cited 2024 Nov 26];11(16):7629. Available from: https://www.mdpi.com/2076-3417/11/16/7629

26. Agustina S, Aidha NN, Oktarina E, Kurniati NF. Evaluation of Antioxidant and Wound Healing Activities of Spirulina sp. Extract. Egypt J Chem [Internet]. 2021 Aug 1 [cited 2024 Nov 26];64(8):4601-10. Available from: https://ejchem.journals.ekb.eg/article_162338.html

27. Yuniati R, Zainuri M, Kusumaningrum H. Qualitative Tests of Secondary Metabolite Compounds in Ethanol Extract of Spirulina platensis from Karimun Jawa Sea, Indonesia. Biosaintifika J Biol Biol Educ [Internet]. 2020 Dec 25 [cited 2024 Nov 26];12(3):343-9. Available from: https://journal.unnes.ac.id/nju/biosaintifika/article/view/23153

28. Kong S, Wiratni W, Budiman A. Protein Extraction from Spirulina platensis by Using Ultrasound Assisted Extraction: Effect of Solvent Types and Extraction Time. Key Eng Mater [Internet]. 2021 Jan 11;872:33-7. Available from: https://www.researchgate.net/publication/348402116_Protein_Extraction_from_Spirulina_platensis_by_Using_Ultrasound_Assisted_Extraction_Effect_of_Solvent_Types_and_Extraction_Time

29. Rahim A, Çakir C, Ozturk M, Şahin B, Soulaimani A, Sibaoueih M, et al. Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South Afr J Bot [Internet]. 2021 Sep 1 [cited 2024 Sep 23];141:235-42. Available from: https://www.sciencedirect.com/science/article/pii/S0254629921001770

30. Silva SC, Almeida T, Colucci G, Santamaria-Echart A, Manrique YA, Dias MM, et al. Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: Optimization through a sequential experimental design strategy. Colloids Surf Physicochem Eng Asp [Internet]. 2022 Sep 5 [cited 2024 Nov 26];648:129264. Available from: https://www.sciencedirect.com/science/article/pii/S0927775722010196

31. López-Padrón I, Martínez-González L, Pérez-Domínguez G, Reyes-Guerrero Y, Núñez-Vázquez M, Cabrera-Rodríguez JA. Las algas y sus usos en la agricultura. Una visión actualizada. Cultiv Trop [Internet]. 2020 Aug 5 [cited 2024 May 14];41(2):e10-e10. Available from: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1554

32. Sivalingam KM. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. J. Algal Biomass Utln. 2020;11(2):34-42. Available from: https://storage.unitedwebnetwork.com/files/521/4ca5cd59fe556a59877dcb110401ee19.pdf

33. Oliveira GE, Pinho RGV, Andrade T de, Pinho ÉV de RV, Santos CD dos, Veiga AD. Physiological quality and amylase enzyme expression in maize seeds. Ciênc E Agrotecnologia [Internet]. 2013 Feb [cited 2024 Sep 23];37:40-8. Available from: https://www.scielo.br/j/cagro/a/JJpGvzwnJkQ9Zx5JLQRN9xR/?lang=en

34. Field Crop Research Institute, VAAS, Vietnam, Thinh NQ. Influences of seed priming with Spirulina platensisextract on seed quality properties in black gram (Vigna mungo L.). Vietnam J Sci Technol Eng [Internet]. 2021 Mar 31 [cited 2024 Nov 26];63(1):36-41. Available from: https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/388/268

35. Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman MEH. Spirulina platensis Biofertilization for Enhancing Growth, Photosynthetic Capacity and Yield of Lupinus luteus. Agriculture [Internet]. 2022 Jun [cited 2024 Nov 26];12(6):781. Available from: https://www.mdpi.com/2077-0472/12/6/781

36. Iuliana Neag E, Stupar Z, Roman C. EFFECT OF SPIRULINA SPP. EXTRACTS ON TOMATO AND ONION SEED GERMINATION |. AGRICULTURA [Internet]. 2022 [cited 2024 Nov 26];124(3-4). Available from: https://journals.usamvcluj.ro/index.php/agricultura/article/view/14437

37. Akgül F, Akgül R. The effect of Spirulina platensis (Gomont) Geitler extracts on seed germination of Lactuca. Alınteri Zirai Bilim Derg [Internet]. 2019 Dec 31 [cited 2024 Nov 26];34(2):148-53. Available from: https://ageconsearch.umn.edu/record/296790?v=pdf

Cultivos Tropicales Vol. 46, No. 1, enero-marzo 2025, ISSN: 1819-4087
 
Original article

Chemical characterization and evaluation of the biological activity of Spirulina extracts

 

iDAnaysa Gutierrez Almeida*✉:anaysa@inca.edu.cu

iDMiriam de la C. Núñez Vázquez

iDYanelis Reyes Guerrero

iDGeydi Pérez Domínguez

iDLisbel Martínez González


Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700

 

*Autor para correspondencia: anaysa@inca.edu.cu

Abstract

The increase in the yield and productivity of crops, without affecting the environment, is one of the challenges that farmers experience today. The use of Spirulina (Arthrospira platensis) extracts as a plant biostimulant is one of the most viable options to use for these purposes. The objective of this work was to obtain, characterize and evaluate the biological activity of some alcoholic extracts of Spirulina. For this, extracts were prepared from Spirulina powder using ethanol as solvent in two concentrations (70 and 90 %), two mass:solvent ratios (1:20 and 1:10) and two maceration times (10 and 21 days) and the content of proteins, phenols and flavonoids of each was determined by spectrophotometric determinations. Biological activity was evaluated using a rice seed germination assay from seed imbibition for 24 h and the germination process was carried out in Petri dishes with distilled water for seven days. The results obtained from the chemical characterization will allow to adapt the extraction parameters depending on the components that are to be favored and the physiological effect that is to be achieved, since the concentration of proteins, phenols and flavonoids in the extracts significantly influenced the percentage end of germination of rice seeds.

Key words: 
Arthrospira platensis, composition, germination, rice

Introduction

 

In recent years, natural products based on algae and cyanobacteria are being used as agrochemical substitutes and have acquired great importance due to the benefits they have on crops and the reduced impact they have on the environment. It has been proven that their application increases certain metabolic and physiological expressions in plants. These products, such as algae and cyanobacteria extracts, are generally obtained by the use of a solvent and an adequate extraction process, and are mainly marketed as biofertilizers due to their high content of macro and micronutrients or as biostimulants because they contain, among other compounds, plant growth promoting hormones (11. Dmytryk A, Samoraj M, Moustakas K, Witek-Krowiak A, Chojnacka K. Bioactive fatty acids and compounds from Spirulina (Arthrospira) platensis: Potential as biostimulants for plant growth. Sustain Chem Pharm [Internet]. 2022 Dec 1 [cited 2024 Nov 25];30:100899. Available from: https://www.sciencedirect.com/science/article/pii/S2352554122003035 -44. Plaza BM, Gómez Serrano C, Acién Fernández FG, Jiménez Becker S. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. Journal of Applied Phycology. 2018 Feb 19 [cited 2024 Nov 25]; Available from: https://repositorio.ual.es/handle/10835/8381 ).

Spirulina (Arthrospira platensis), one of the most widely used for these purposes, is a microscopic blue-green cyanobacterium, where the blue color comes from the phycocyanin present and the green from the chlorophyll, and it was considered a microalgae until very recently. It derives its name from the spiral nature of its filaments and has become an object of scientific study due to its bioavailability of nutrients, since 85-95 % are assimilable (55. Belaustegui I. Espirulina: propiedades y beneficios - Jesús Sierra [Internet]. 2023 [cited 2024 Nov 25]. Available from: https://jesussierra.com/espirulina/ ).

It has approximately 60-70 % of its dry mass in proteins with high bioavailability, it also contains chlorophylls, as well as phenolic compounds and flavonoids that can act as natural antioxidants (66. Kaur M, Bhatia S, Bayram I, Decker EA, Phutela UG. Oxidative stability of emulsions made with self-extracted oil from euryhaline microalgae Spirulina and Scenedesmus. Algal Res [Internet]. 2023 Sep 1 [cited 2024 Nov 25];75:103280. Available from: https://www.sciencedirect.com/science/article/pii/S2211926423003132 -88. Munawaroh H, Fathur R, Gumilar G, Aisyah S, Yuliani G, Mudzakir A, et al. Characterization and physicochemical properties of chlorophyll extract from Spirulina sp. J Phys Conf Ser [Internet]. 2019 Nov 1;1280:022013. Available from: https://www.researchgate.net/publication/337443355_Characterization_and_physicochemical_properties_of_chlorophyll_extract_from_Spirulina_sp ). It is the terrestrial and aquatic organism with the highest protein content and the best aminogram and digestibility (77. Manrich A, de Oliveira JE, Martins MA, Capparelli ML. Physicochemical and Thermal Characterization of the Spirulina platensis. Journal of Agricultural Science and Technology [Internet]. 2020;298-307. Available from: http://www.davidpublisher.com/Public/uploads/Contribute/601b72a5d8536.pdf ); therefore, it is widely used as a source of amino acids for humans, animals and plants. It also contains essential polyunsaturated fatty acids and vitamins, as well as xanthines, phycobiliproteins (99. Papadaki S, Kyriakopoulou K, Tzovenis I, Krokida M. Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov Food Sci Emerg Technol [Internet]. 2017 Dec 1 [cited 2024 Nov 25];44:217-23. Available from: https://www.sciencedirect.com/science/article/pii/S1466856416305264 ,1010. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina ), carbohydrates, nitrogen, phosphorus, potassium, calcium, iron, manganese, zinc (1010. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina ). It also has a high content of vitamins B12, B1, B2, B6 and E, biotin, pantothenic acid, folic acid, inositol and niacin (1010. Campanella L, Crescentini G, Avino P. Chemical composition and nutritional evaluation of some natural and commercial food productsbased on Spirulina. Analusis [Internet]. 1999 Jul 1;27:533-40. Available from: https://www.researchgate.net/publication/245275925_Chemical_composition_and_nutritional_evaluation_of_some_natural_and_commercial_food_productsbased_on_Spirulina ), halogenated compounds, polyketides, agar agar, alginic acid and carrageenan (1111. Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy [Internet]. 2019 Apr [cited 2024 May 14];9(4):192. Available from: https://www.mdpi.com/2073-4395/9/4/192 ), great richness in α- and ß-carotenes (77. Manrich A, de Oliveira JE, Martins MA, Capparelli ML. Physicochemical and Thermal Characterization of the Spirulina platensis. Journal of Agricultural Science and Technology [Internet]. 2020;298-307. Available from: http://www.davidpublisher.com/Public/uploads/Contribute/601b72a5d8536.pdf ,1212. Wuang SC, Khin MC, Chua PQD, Luo YD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res [Internet]. 2016 Apr 1 [cited 2024 Nov 25];15:59-64. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416300480 ), phycocyanin, considerable amounts of α-linolenic acid (polyunsaturated fatty acid with different beneficial effects) (1313. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci [Internet]. 2019 May 1 [cited 2024 Nov 25];26(4):709-22. Available from: https://www.sciencedirect.com/science/article/pii/S1319562X17302784 ), a high concentration of phytohormones, trace elements, antioxidants and polysaccharides, therefore, it is an excellent biological supplement (1414. L A, P K, G SB. Evaluation of Spirulina platensis as microbial inoculants to enhanced protein levels in Amaranthus gangeticus. Afr J Agric Res [Internet]. 2016 Apr 14 [cited 2024 Nov 25];11(15):1353-60. Available from: http://academicjournals.org/journal/AJAR/article-abstract/1221D1E58055 ).

The effects that the Spirulina application has caused in different plant species have been reported by several authors. Thus, in Amaranthus gangeticus, it has been found that imbibition of seeds and foliar application of Spirulina extracts increased protein (1414. L A, P K, G SB. Evaluation of Spirulina platensis as microbial inoculants to enhanced protein levels in Amaranthus gangeticus. Afr J Agric Res [Internet]. 2016 Apr 14 [cited 2024 Nov 25];11(15):1353-60. Available from: http://academicjournals.org/journal/AJAR/article-abstract/1221D1E58055 ) and iron levels in plants (1515. Anitha L, Kalpana P, Bramari SG. BIOFORTIFICATION OF AMARANTHUS GANGETICUS USING SPIRULINA PLATENSIS AS MICROBIAL INOCULANT TO ENHANCE IRON LEVELS. Int J Res Appl Nat Soc Sci [Internet]. 2014 [cited 2024 Nov 25];2:103-10. Available from: https://www.academia.edu/7025447/BIOFORTIFICATION_OF_AMARANTHUS_GANGETICUS_USING_SPIRULINA_PLATENSIS_AS_MICROBIAL_INOCULANT_TO_ENHANCE_IRON_LEVELS ). Similarly, it was reported that imbibition of Phaseolus aureus and Solanum lycopersicum L. seeds in extracts of this cyanobacterium increased Zn levels in plants (1616. Anitha L, Bramari GS, Kalpana P. Effect of supplementation of Spirulina platensis to enhance the zinc status in plants of Amaranthus gangeticus, Phaseolus aureus and tomato. Advances in Bioscience and Biotechnology. 2016;7(6):289-99. Available from: https://www.researchgate.net/publication/304608048_Effect_of_Supplementation_of_Spirulina_platensis_to_Enhance_the_Zinc_Status_in_Plants_of_Amaranthus_gangeticus_Phaseolus_aureus_and_Tomato ). In the species Solanum melongena L., the application of a commercial fertilizer based on Spirulina increased plant yield without affecting foliar levels of N, P, K and Na or quality indicators (1717. Dias G, Rocha R, Araújo J, Lima J, Guedes W. Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semina Ciênc Agrár [Internet]. 2016 Dec 14;37(6):3893. Available from: https://www.researchgate.net/publication/311851452_Growth_yield_and_postharvest_quality_in_eggplant_produced_under_different_foliar_fertilizer_Spirulina_platensis_treatments ). In addition, it was found that Spirulina platensis extract has positive effects on wheat and barley seed germination, as well as on root and stem lengths (1818. Akgül F. Effect of Spirulina platensis (Gomont) Geitler Extract on Seed Germination of Wheat and Barley. Alinteri J Agric Sci [Internet]. 2019 Dec 31 [cited 2024 Nov 26];34(2):148-53. Available from: https://dergipark.org.tr/en/pub/alinterizbd/issue/51098/639000 ).

In Cuba, Spirulina has been cultivated for more than three decades; however, its use for agricultural purposes has been very limited and there is no information available about the use of extracts for these purposes. For this reason, the objective of the present work was to obtain, characterize and evaluate the biological activity of some alcoholic extracts of Spirulina.

Materials and methods

 

The experiment was carried out at the Department of Plant Physiology and Biochemistry of the National Institute of Agricultural Sciences (INCA). Extracts were prepared from Spirulina powder from the Génix Company of LABIOFAM S.A., using ethanol (absolute ethanol M= 46.07) as solvent.

Two ethanol concentrations (70 and 90 %), two mass-solvent ratios (1:20 and 1:10) and two maceration times (10 and 21 days) were studied for the elaboration of the extracts. The extracts obtained were as follows:

  1. Mass-solvent ratio 1:20 using EtOH 90 % for 21 days.

  2. Mass-solvent ratio 1:20 using EtOH 90 % for 10 days.

  3. Mass-solvent ratio 1:20 using EtOH 70 % for 21 days.

  4. Mass-solvent ratio 1:20 using EtOH 70 % for 10 days.

  5. Mass-solvent ratio 1:10 using EtOH 90 % for 21 days.

  6. Mass-solvent ratio 1:10 using EtOH 90 % for 10 days.

  7. Mass-solvent ratio 1:10 using EtOH 70 % for 21 days.

  8. Mass-solvent ratio 1:10 using EtOH 70 % for 10 days.

Chemical characterization of the extracts

 

The chemical characterization of the extracts was carried out by biochemical analysis methods with spectrophotometric determinations of proteins, flavonoids and phenols from the representation of the standard curve corresponding to each technique with the measurement of four repetitions of absorbances of each standard. Three calibration curves were obtained, where absorbance values of each standard were plotted as a function of concentration (1919. Silva A de S e, de Magalhães WT, Moreira LM, Rocha MVP, Bastos AKP. Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Res [Internet]. 2018 Nov 1 [cited 2024 Nov 26];35:178-84. Available from: https://www.sciencedirect.com/science/article/pii/S2211926418301668 ).

The quantification of proteins of each extract was performed using the Micro-Lowry method (2020. Waterborg JH. The Lowry Method for Protein Quantitation. In: Walker JM, editor. The Protein Protocols Handbook [Internet]. Totowa, NJ: Humana Press; 2009 [cited 2024 Nov 26]. p. 7-10. Available from: https://doi.org/10.1007/978-1-59745-198-7_2 ), the phenol content according to the Folin-Ciocalteau method (2121. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic [Internet]. 1965 Jan 1 [cited 2024 Nov 26];16(3):144-58. Available from: https://www.ajevonline.org/content/16/3/144 ) and flavonoids were determined using a spectrophotometric method (2222. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000 Sep;72(1-2):35-42.).

Evaluation of the biological activity of the extracts

 

To determine whether the composition of proteins, phenols and flavonoids influenced the biological activity of the extracts, biological evaluation was performed on the extracts with the lowest (A) and highest (B) content of these compounds. For this purpose, an experiment was carried out in which rice seeds cv. INCA LP-7, for 24 h, with different concentrations (5; 1; 0.5; 0.05; 0.005 mg L-1) of A and B extracts.

For germination, seeds were placed in Petri dishes (20 seeds per dish and four dishes per treatment) containing distilled water. The treatments were as follows:

  1. Imbibition with distilled water (Control).

  2. Imbibition with 5 mg L-1 of extract A.

  3. Imbibition with 1 mg L-1 of the extract A.

  4. Imbibition with 0.5 mg L-1 of extract A.

  5. Imbibition with 0.05 mg L-1 of extract A.

  6. Imbibition with 0.005 mg L-1 of the extract A.

  7. Imbibition with 5 mg L-1 of extract B.

  8. Imbibition with 1 mg L-1 of extract B.

  9. Imbibition with 0.5 mg L-1 of extract B.

  10. Imbibition with 0.05 mg L-1 extract B.

  11. Imbibition with 0.005 mg L-1 of extract B.

The plates were placed in the germination chamber at 28 °C for seven days, evaluating the number of germinated seeds per plate at 24, 48, 72 and 144 hours, determining the final germination percentage and germination speed, and after ten days, the dry mass of the radicles (25 radicles per treatment, five samples of five radicles each).

For data processing, means, standard deviations and confidence intervals at α=0.05 were calculated using Excel software.

Results and discussion

 

Chemical characterization of the extracts

 

Table 1 shows the content of proteins, phenols and flavonoids present in the extracts analyzed.

Table 1.  Concentration of total soluble proteins, phenols and flavonoids of the different alcoholic extracts of Spirulina
Extracts° Proteins (μg μL-1) Phenols (μg μL-1) Flavonoids (μg μL-1)
1 5.5663 ± 1.1764 0.6513 ± 0.0420 3.1232 ± 0.1822*
2 6.7619 ± 0.8062 0.6255 ± 0.0339 2.9988 ± 0.1405*
3 26.4102 ± 1.7561* 1.3309 ± 0.0184* 1.8640 ± 0.1030
4 13.0988 ± 2.2376* 0.7109 ± 0.0181 0.6049 ± 0.0849
5 10.2957 ± 1.9360 0.8627 ± 0.0389 4.4198 ± 0.1523*
6 7.7716 ± 0.5229 0.7421 ± 0.0426 3.3150 ± 0.0842*
7 17.8415 ± 0.3408* 1.1201 ± 0.0181* 1.8506 ± 0.0719
8 21.0298 ± 2.4684* 1.0707 ± 0.0244* 1.4563 ± 0.0473

1. Mass ratio: solvent 1:20 using EtOH 90 % for 21 days. 2. Mass ratio: solvent 1:20 using EtOH 90 % for 10 days. 3. Mass ratio: solvent 1:20 using EtOH 70 % for 21 days. 4. Mass ratio: solvent 1:20 using EtOH 70 % for 10 days. 5. Mass ratio: solvent 1:10 using EtOH 90% for 21 days. 6. Mass ratio: solvent 1:10 using EtOH 90 % for 10 days. 7. Mass ratio: solvent 1:10 using EtOH 70 % for 21 days. 8. Mass ratio: solvent 1:10 using EtOH 70 % for 10 days. *Means differing significantly from the control treatment according to confidence interval at α=0.05

As shown in Table 1, the highest protein concentrations were obtained when 70 % EtOH was used (extracts 3, 4, 7, 8), regardless of the mass-solvent ratio used, so that a lower ethanol concentration favors the presence of proteins in the extracts. Note that with a mass-solvent ratio of 1:20 and a 10-day maceration (extract 4), which is the most economical extract, a good protein content was obtained, suggesting that this extract could be used for crop biofortification.

With the phenol content, something similar occurred, while the highest concentrations of flavonoids were obtained in the extracts obtained with 90 % EtOH (extracts 1, 2, 5, 6), independently of the mass-solvent ratio and maceration time.

It follows that extraction with EtOH 70 % favored the content of soluble proteins and total phenols in the extracts, which is logical since the higher amount of water favors polarity. According some authors (2323. Cepoi L, Ludmila R, Vera M, Angela C, Chiriac T, Sadovnic D. Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia measured by various methods. Analele Univ Din Oradea Fasc Biol [Internet]. 2009 Nov 1;TOM XVI. Available from: https://www.researchgate.net/publication/40422973_Antioxidative_activity_of_ethanol_extracts_from_Spirulina_platensis_and_Nostoc_linckia_measured_by_various_methods ), the extraction of antioxidant compounds from Spirulina biomass was more effective with a 70 % ethanol solution. Likewise, antioxidant activity was favored in Spirulina extracts obtained with ethanol as solvent over other solvents such as H20, methanol and petroleum ether (2424. Varsale A, Singh V, Mali S, Parihar P, Mane R. Phytochemical analysis, antioxidant and antifungal activity of different solvent extracts of Spirulina platensis collected from Rankala Lake, Kolhapur, Maharashtra. Phytochem Anal [Internet]. 2019;10(1):36-42. Available from: https://storage.unitedwebnetwork.com/files/521/ba6ab112b0e28c164f459c61b622daf1.pdf ). On the other hand, the extraction of total phenolic compounds was favored in extracts prepared with 50 % ethanol over those prepared with 50 % dimethyl sulfoxide (2525. Martí-Quijal FJ, Ramon-Mascarell F, Pallarés N, Ferrer E, Berrada H, Phimolsiripol Y, et al. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl Sci [Internet]. 2021 Jan [cited 2024 Nov 26];11(16):7629. Available from: https://www.mdpi.com/2076-3417/11/16/7629 ).

Maceration with 90 % EtOH solution increased the content of total flavonoids, which could be useful to favor crops subjected to environmental stress, since the role of these compounds in increasing antioxidant activity is known (2626. Agustina S, Aidha NN, Oktarina E, Kurniati NF. Evaluation of Antioxidant and Wound Healing Activities of Spirulina sp. Extract. Egypt J Chem [Internet]. 2021 Aug 1 [cited 2024 Nov 26];64(8):4601-10. Available from: https://ejchem.journals.ekb.eg/article_162338.html ). Other authors have obtained high concentrations of flavonoids, alkaloids and saponins from Spirulina biomass with absolute ethanol extraction (2727. Yuniati R, Zainuri M, Kusumaningrum H. Qualitative Tests of Secondary Metabolite Compounds in Ethanol Extract of Spirulina platensis from Karimun Jawa Sea, Indonesia. Biosaintifika J Biol Biol Educ [Internet]. 2020 Dec 25 [cited 2024 Nov 26];12(3):343-9. Available from: https://journal.unnes.ac.id/nju/biosaintifika/article/view/23153 ).

It is interesting to note that the concentrations of the compounds evaluated did not differ significantly when comparing the two maceration times used. The time factor becomes more significant when using methods such as ultrasonication or microwave-assisted extraction, not so much maceration (2828. Kong S, Wiratni W, Budiman A. Protein Extraction from Spirulina platensis by Using Ultrasound Assisted Extraction: Effect of Solvent Types and Extraction Time. Key Eng Mater [Internet]. 2021 Jan 11;872:33-7. Available from: https://www.researchgate.net/publication/348402116_Protein_Extraction_from_Spirulina_platensis_by_Using_Ultrasound_Assisted_Extraction_Effect_of_Solvent_Types_and_Extraction_Time ).

The presence of proteins, phenols, flavonoids, etc. in Spirulina extracts favors seed germination, the formation of healthy and balanced plants, higher crop yields, longer post-harvest life, greater leaf vigor, less incidence of diseases and greater resistance to stress due to climatic factors or drought (2929. Rahim A, Çakir C, Ozturk M, Şahin B, Soulaimani A, Sibaoueih M, et al. Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South Afr J Bot [Internet]. 2021 Sep 1 [cited 2024 Sep 23];141:235-42. Available from: https://www.sciencedirect.com/science/article/pii/S0254629921001770 -3131. López-Padrón I, Martínez-González L, Pérez-Domínguez G, Reyes-Guerrero Y, Núñez-Vázquez M, Cabrera-Rodríguez JA. Las algas y sus usos en la agricultura. Una visión actualizada. Cultiv Trop [Internet]. 2020 Aug 5 [cited 2024 May 14];41(2):e10-e10. Available from: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1554 ). It should be taken into account that in the extracts, as mentioned above, there are many other compounds that were not determined in this work and that can influence their biological activity.

Nevertheless, with this limited chemical characterization, it was decided to select extracts 1 and 3 as the extracts with the lowest and highest protein and phenol content, respectively, to evaluate their biological activity as a stimulator of rice seed germination.

Biological activity of the extracts

 

The speed and final percentage of seed germination for each of the treatments are shown in Table 2. As can be seen, there was an influence on the final germination percentage with two concentrations (5 and 0.5 mg L-1) of extract 3, although there were no significant differences in the germination speed, so that the higher concentration of soluble proteins and total phenols presented by this extract significantly increased the final germination percentage of rice seeds cv. INCA LP-7.

Table 2.  Effect of different concentrations of two alcoholic extracts of Spirulina on seed germination of rice cv. INCA LP-7(Means ± confidence intervals)
Concentrations mg L-1 Alcoholic extracts of Spirulina Final germination Germination rate (seeds germinated day-1)
0 - 72.50 ± 2.83 11.95±0.39
5 Extract 1 72.50 ± 6.33 10.95±1.59
1 75.00 ± 8.95 10.62±0.92
0.5 82.50 ± 10.20 12.91±1.29
0.05 78.33 ± 5.66 12.05±0.83
0.005 75.00 ± 4.00 11.08±0.78
5 Extract 3 82.50 ± 6.33* 12.40±1.42
1 71.25 ± 4.69 9.29±0.80
0.5 83.33 ± 71.48* 11.44±0.92
0.05 68.75 ± 14.07 10.04±2.52
0.005 67.50 ± 8.49 9.54±0.82

Extract 1: Mass ratio: solvent 1:20 using EtOH 90 % for 21 days. Extract 3: Mass-solvent ratio 1:20 using EtOH 70 % for 21 days *Means differing significantly from control treatment according to confidence interval at α=0.05

Table 3.  Effect of different concentrations of two alcoholic extracts of Spirulina on the dry mass of radicles of rice seedlings cv. INCA LP-7 (Means ±confidence intervals)
Concentracions mg L-1 Spirulina alcoholic extracts Dry mass of radicles (mg plant-1)
0 - 4.37 ± 0.54
5 Extract 1 4.00 ± 0.23
1 4.50 ± 0.69
0.5 4.02 ± 0.57
0.05 4.15 ± 0.34
0.005 4.44 ± 0.69
5 Extract 3 4.73 ± 0.35
1 3.92 ± 0.60
0.5 3.81 ± 0.30
0.05 4.82 ± 0.49
0.005 4.04 ± 0.27

Extract 1: Mass ratio: solvent 1:20 using EtOH 90 % for 21 days. Extract 3: Mass-solvent ratio 1:20 using EtOH 70 % for 21 days

The results of radicle dry mass showed that there were no significant differences between treatments; however, the immersion of the seeds in 5 mg L-1 and 0.05 mg L-1 of extract 3 increased the dry mass of the radicles by 8.2 and 10.3 %, respectively. Note that the treatment with 5 mg L-1 of this extract was one of those that significantly increased the final germination percentage; confirming the influence that a higher concentration of soluble proteins and total phenols exerted on the germination and initial growth of rice seedlings.

Microalgae and their extracts are natural stimulants that accelerate seed germination and increase seedling vigor when used at relatively low doses (3232. Sivalingam KM. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. J. Algal Biomass Utln. 2020;11(2):34-42. Available from: https://storage.unitedwebnetwork.com/files/521/4ca5cd59fe556a59877dcb110401ee19.pdf ). Several studies describe their beneficial effects on germination percentage, rate and mean germination time, as well as plumule and radicle length. These results are attributed to the activation of key enzymatic pathways for germination physiology. For example, α-amylase is an enzyme synthesized in the aleurone layer and its gene expression is regulated by gibberellins. This enzyme is responsible for the mobilization of reserve substances, such as starch, from the endosperm to support embryo growth and differentiation (3333. Oliveira GE, Pinho RGV, Andrade T de, Pinho ÉV de RV, Santos CD dos, Veiga AD. Physiological quality and amylase enzyme expression in maize seeds. Ciênc E Agrotecnologia [Internet]. 2013 Feb [cited 2024 Sep 23];37:40-8. Available from: https://www.scielo.br/j/cagro/a/JJpGvzwnJkQ9Zx5JLQRN9xR/?lang=en ). To demonstrate this hypothesis, the significant effects that an extract of Spirulina platensis exerted on peanut (Arachis hypogaea L.) crop on indicators such as seed germination percentage, radicle length, and protein and carbohydrate contents were recently reported (3232. Sivalingam KM. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. J. Algal Biomass Utln. 2020;11(2):34-42. Available from: https://storage.unitedwebnetwork.com/files/521/4ca5cd59fe556a59877dcb110401ee19.pdf ). In another study, enhanced vigor, quality and germination of black bean (Vigna mungo L.) seeds were reported to be correlated with increased gibberellic acid and α-amylase enzyme activity, when soaked in 1.5 % Spirulina platensis extract for 3 hours (3434. Field Crop Research Institute, VAAS, Vietnam, Thinh NQ. Influences of seed priming with Spirulina platensisextract on seed quality properties in black gram (Vigna mungo L.). Vietnam J Sci Technol Eng [Internet]. 2021 Mar 31 [cited 2024 Nov 26];63(1):36-41. Available from: https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/388/268 ). On the other hand, it was found that the use of a methanolic extract (0.25 %) favored almost all growth indicators, nutrient content, yield components and phytohormone level of Lupinus luteus (3535. Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman MEH. Spirulina platensis Biofertilization for Enhancing Growth, Photosynthetic Capacity and Yield of Lupinus luteus. Agriculture [Internet]. 2022 Jun [cited 2024 Nov 26];12(6):781. Available from: https://www.mdpi.com/2077-0472/12/6/781 ). In another investigation, it was found that when tomato seeds were treated with 0.2 g 100 mL of Spirulina extract, a germination rate of 86.7 % was obtained (3636. Iuliana Neag E, Stupar Z, Roman C. EFFECT OF SPIRULINA SPP. EXTRACTS ON TOMATO AND ONION SEED GERMINATION |. AGRICULTURA [Internet]. 2022 [cited 2024 Nov 26];124(3-4). Available from: https://journals.usamvcluj.ro/index.php/agricultura/article/view/14437 ), and concentrations of 25 and 50 % of this extract had a positive effect on seed germination and the development of lettuce seedlings (3737. Akgül F, Akgül R. The effect of Spirulina platensis (Gomont) Geitler extracts on seed germination of Lactuca. Alınteri Zirai Bilim Derg [Internet]. 2019 Dec 31 [cited 2024 Nov 26];34(2):148-53. Available from: https://ageconsearch.umn.edu/record/296790?v=pdf ).

The results obtained in this research, although still preliminary, showed the importance of ethanol concentration and maceration time in the composition and activity as agricultural biostimulant of Spirulina extracts; therefore, it is necessary to continue deepening in this sense, with a view to obtaining biologically active extracts that can be satisfactorily used in agriculture.

Conclusions

 
  • The chemical characterization of the alcoholic extracts of Spirulina allowed the selection of two extracts for the evaluation of their biological activity.

  • A higher concentration of soluble proteins and phenols in the extracts favored germination and dry mass of rice seedling radicles.

Recommendation

 
  • To continue to characterize the extracts and evaluate the biological activity of the extracts in other crops.