Cultivos Tropicales Vol. 46, No. 2, abril-junio 2025, ISSN: 1819-4087
Código QR
Cu-ID: https://cu-id.com/2050/v46n2e07
Revisión bibliográfica

Potencialidades de las nanopartículas de quitosano en el cultivo del arroz (Oryza sativa L.)

 

iDAida Tania Rodríguez Pedroso1Unidad Científico Tecnológica de Base “Los Palacios”. Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700*✉:atania@inca.edu.cu

iDMiguel Ángel Ramírez Arrebato1Unidad Científico Tecnológica de Base “Los Palacios”. Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700

iDMaribel Plascencia Jatomea2Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, PO Box 1658, Hermosillo, Sonora, México. CP 83 000


1Unidad Científico Tecnológica de Base “Los Palacios”. Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700

2Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, PO Box 1658, Hermosillo, Sonora, México. CP 83 000

 

*Autor para correspondencia: atania@inca.edu.cu

Resumen

Las nanopartículas de quitosano (NPQ) son compuestos que tienen un gran potencial en la agricultura moderna debido a los desafíos que esta enfrenta como el cambio climático, la severidad de las enfermedades y la limitada disponibilidad de importantes nutrientes para las plantas. Por lo que, este artículo presenta una revisión de la literatura sobre las NPQ, sus diferentes usos en la agricultura, métodos de obtención, las aplicaciones en el cultivo del arroz como bioestimulante, antifúngico e inductor de resistencia contra Pyricularia oryzae.

Palabras clave: 
germinación, nanotecnología, biocompuestos

Recibido: 09/2/2023; Aceptado: 16/8/2024

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.

Contribución de los autores: Conceptualización: Aida Tania Rodríguez Pedroso, Miguel Ángel Ramírez Arrebato. Revisión del tema en INTERNET: Aida Tania Rodríguez Pedroso, Miguel Ángel Ramírez Arrebato, Maribel Plascencia Jatomea. Escritura del borrador inicial: Aida Tania Rodríguez Pedroso y Maribel Plascencia Jatomea. Escritura y edición final: Aida Tania Rodríguez Pedroso, Miguel Ángel Ramírez Arrebato

CONTENIDO

Introducción

 

La creciente población mundial demanda alimentos y otros insumos, por lo cual el desafío que enfrentan los investigadores agrícolas en el siglo XXI es innovar y generar tecnologías para producir la cantidad de comida suficiente y con calidad para alimentar a la creciente población mundial, pero sin degradar la salud del suelo y los agroecosistemas (11. Bharadwaj DN. Chapter 2. Sustainable agriculture and plant breeding. En Al-Khayri JM, Mohan S, Johnson D (Eds.) Advances in plant breeding strategies: agronomic, abiotic and biotic stress. 2016, pp.3-34, Estados Unidos: Springer International Publishing. ISBN:978-3-319-22517-3 doi:10.1007/978-3-319-22518-0_1.). Se ha estimado que la producción mundial de alimentos debe aumentar entre 70 y 100% para el año 2050 para poder satisfacer la demanda cada vez mayor de la población que continúa en constante aumento (22. OCDE/FAO Perspectivas Agrícolas 2019-2028, OECD Publishing, París/Organización de las Naciones Unidas para la alimentación y la agricultura (FAO), Roma. 2019 https://doi.org/10.1787/7b2e8ba-es ). Sin embargo, la producción agrícola sigue estando afectada por una gran cantidad de plagas de insectos, enfermedades y malezas (33. Fried G, Chauvel B, Reynaud P, Sache I. Decreases in crop production by non-native weeds, pest and pathogen. En Vila M nd Hulme P. Impact of biological Invasions on Ecosystem Service. 2017; pp.83-101, Estados Unidos: Springer International Publishing. https://doi.org/10.1007/978-3-319-45121-3-6 ).

En las últimas décadas, se ha incrementado el uso de agroquímicos (sustancias como fungicidas, insecticidas, herbicidas, rodenticidas, fertilizantes, estimulantes del crecimiento de las plantas, etc.) en diferentes cultivos donde China, Estados Unidos de América y Argentina son los principales consumidores de estos productos (44. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences. 2019; 1, 1446. doi: https://dx.doi.org/10.1007/s42452-019-1485-1 ).

El arroz es uno de los cultivos de mayor demanda en el mundo y su consumo ha aumentado en las últimas décadas, con el consiguiente incremento en la aplicación de herbicidas, insecticidas y fungicidas, durante diversas fases del cultivo para incrementar su producción.

En Cuba, el arroz constituye el alimento básico de la dieta de los cubanos y el consumo de la población está en más de 75 kg per cápita. Tiene una gran dependencia de los productos químicos para su producción que son altamente costosos y tóxicos para el hombre y el medio ambiente. Es por ello, que se investiga en la búsqueda de nuevos productos naturales, más económicos, biodegradables y no tóxicos.

Entre los compuestos de origen natural y con una gama amplia de aplicaciones relacionada directamente con la agricultura se encuentra la quitina y, especialmente, su derivado más conocido: el quitosano. Este principio activo ha sido utilizado en la protección fúngica de semillas y plántulas, como bioestimulante del crecimiento e inductor de mecanismos de defensa en plantas, en la protección post-cosecha de flores y frutos, en la fabricación de películas para embalaje de productos agropecuarios, etc (55. Lárez-Velásquez C. Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola. 2008; 8(1):1-22. ISSN-e 1317-9152). En el arroz, este compuesto ha demostrado tener actividad antimicrobiana sobre patógenos de importancia económica, ser inductor de resistencia y ha estimulado la germinación de la semilla, variables del crecimiento y los componentes del rendimiento (66. Rodríguez AT, Ramírez MA, Cárdenas RM, Hernández AN, Velázquez MG, Bautista S. Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology. 2007; 89(3):206-15, ISSN 0048-3575. https://doi.org/10.1016/j.pestbp.2007.06.007 -99. Toan NV, Hanh TT. Application of chitosan solutions for rice production in Vietnam. African Journal of Biotechnology. 2013;12(4), 382-384, ISSN:1684-5315. https://doi.org/10.5897/AJB12.2884 ).

Es por ello, que la aplicación de nanopartículas contribuye a que las plantas tengan una mejor absorción de nutrientes, resistencia a los daños, además de una mejor producción y calidad en las cosechas. Existen diferentes métodos de síntesis de nanomateriales, estos pueden ser físicos, químicos o donde se depositan nanopartículas sobre soportes como son: adsorción iónica, precipitación, de coloides y fotoquímico (1010. Borja-Borja JM, Rojas-Oviedo BS. Nanomateriales: Métodos de síntesis. Polo Científico. 2020; 5(08) agosto: 426-445, ISSN:2550-682X. https://doi.org/10.23857//pc.v5i8.1597 ).

Debido al conocimiento derivado de la utilidad de este biocompuesto, se busca la forma de optimizar sus aplicaciones en el área agrícola mediante la nanotecnología como una estrategia integral hacia la sostenibilidad en la productividad, en la obtención de altos rendimientos y la protección vegetal. Es objetivo de esta revisión documentar sobre las potencialidades de esta nueva tecnología en cultivos de importancia económica como es el arroz.

Desarrollo

 

La nanotecnología y sus aplicaciones en la agricultura

 

Las llamadas nanociencias y nanotecnologías se han ido constituyendo en las principales áreas del desarrollo científico tecnológico en los últimos veinte años (1111. Gulín-González. Tercer seminario internacional de nanociencias y nanotecnologías. Revista CENIC Ciencias Químicas. 2010;41(2) mayo-agosto:144-145, ISSN:1015-8553, http://www.redalyc.org/articulo.oa?id=181620526008 ). La nanotecnología es una nueva ciencia que involucra la manipulación y uso de materiales con tamaños inferiores al micrómetro.

La palabra nano es un prefijo cuyo significado es enano, adjetivo que se aplica para indicar tamaño más pequeño que el promedio, generalmente de una persona. Cuando se usa como prefijo de alguna unidad de medida significa la milmillonésima parte de ésta (1 nano= 1x10-9) (1212. Lárez-Velásquez C, Koteich-Khatib S, López-González F. Capítulo 8. Quitosano y nanopartículas. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039 ). Según la definición de la Organización Internacional de Estandarización (ISO, International Organization for Standarización) se consideran como nanopartículas (NPs) aquellas porciones de materia cuyas tres dimensiones externas caen dentro del rango de la nanoescala (entre 1-100 nm) (1313. ISO/DTS 80004-2:2015. Nanotechnologies-Vocabulary-Part 2: Nano-objects. Disponible en: https://www.iso.org/standard/54440.html ). La fortaleza de la nanotecnología reside, básicamente, en hacer productos más eficientes, multifuncionales y ahorradores de materia prima. Dentro del mercado mundial, en la nanotecnología, está en aumento el interés por las NPs y los nanocompuestos. Durante los últimos años se ha extendido el estudio de los llamados nanomateriales (NMs) y los materiales nanoestructurados, cuya característica principal es el tamaño de las fases involucradas, que se encuentra en el orden de los nanómetros (1414. Sotelo Boyás ME, Bautista Baños S, Aldana Llanos L, Solorza Feria J, Jiménez Aparicio A, Barrera Necha LL, et al. Capítulo 12. La nanotecnología en el control de microorganismos patógenos e insectos de importancia económica. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039. 2015. 295-309 ).

Dentro de las aplicaciones que la nanotecnología está considerando en el sector agrícola se encuentra el desarrollo de químicos como fertilizantes, herbicidas y reguladores del crecimiento, para incrementar la producción agrícola. Otras aplicaciones en este sector son: los nanosensores para la detección de patógenos de plantas y la utilización de NMs para la estabilización de bioplaguicidas, entre otras (1515. Chen H, Yada R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Technology. 2011.22, 585-94. doi: https://doi.org/10.1016/j.tifs.2011.09.004 ,1616. Ghormade V, Deshpande M, Paknikar. Perspectives for nano-biotecnology enable protection and nutrition of plants. Biotecnology Advances. 2011. 29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007 ). Como ventajas permite reducir al mínimo las pérdidas de nutrientes en la fertilización y mejorar la productividad de los cultivos a través de la optimización del uso del agua y los nutrientes (1717. Dubey A, Mailapalli DR. Nanofertilizers, nano pesticides, nanosensors of pest and nanotoxicity in agricultore. En Lichtfouse E.(ed) Sustainable Agriculture Reviews. 2016;307-30. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-26777-7_7 ,1818. Rameshaiah G, Pallavi J, Shabnam S. Nano fertilizers and nano sensors an attempt for developing smart agriculture. International Journal of Engineering Research and General Science. 2015; 3(1);314-20.ISSN 2091-2730).

Se ha demostrado que la encapsulación de los ingredientes activos en NPs aumenta la eficacia de sus ingredientes químicos, ya que se permiten reducir su volatilización, lixiviación y se puede reducir la toxicidad y contaminación de los agroecosistemas usando estos nanoproductos (1919. Cota O, Cortez M, Burgos A, Ezquerra J, Plasencia M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture. 2013;93(7):1525-36. https://doi.org/10.1002/jsfa.6060 ). Las NPs que se utilizan para mejorar la eficiencia de los plaguicidas permiten aplicar en el campo menores dosis del producto (2020. Patil C, Borase H, Patil S, Salunkhe R, Salunke H. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypt and Anopheles stenphense and nontarget fish Poecillia reticulate. Parasitology Research. 2012; 111(2), 555-62. https://doi.org/10.1007/s00436-012-2867-0 ).

Aplicaciones de nanopartículas de quitosano en la agricultura

 

En los últimos años numerosos biopolímeros tales como almidón, celulosa, alginato, quitina y quitosano han sido utilizados para el desarrollo de nuevos materiales con sostenibilidad ambiental y funcionalidad deseable (2121. Babu RB, O'Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials 2. 2013;8. doi: http://dx.doi.org/10.1186/2194-0517-2-8 ).

En cuanto al quitosano, es una forma desacetilada de la quitina, el cual es un copolímero lineal de 2-acetamida-e-deoxy-β-D-glucopiranosa y 2-amino-2-deoxy-β-D-glucopiranosa. Este polímero es el segundo más abundante de la naturaleza después de la celulosa y se encuentra en el exoesqueleto de crustáceos, cutícula de insectos y pared celular de los hongos (2222. Piras AM, Maisettab G, Sandreschia S, Esinb S, Gazzarria M, Batonib G, et al. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules. 2014;67:124-31. https://doi.org/10.1016/j.ibiomac.2014.03.016 ). Entre sus propiedades ventajosas están: la abundancia, biocompatibilidad, biodegrabilidad, seguridad y no toxicidad. Además de sus características físico químicas, como tamaño, área superficial, naturaleza catiónica, grupos funcionales activos, mayor eficiencia de encapsulación, facilidad de mezcla con otros componentes, etc (2323. Oh JW, Chun SC, Chandrasekaran M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to bacterial activities against phytopathogens of tomato. Agronomy. 2019;9(21):2-12. https://doi.org/10.3390/agronomy9010021 ). Es por ello, que las nanopartículas de quitosano (NPQ) pueden ser aplicadas como antifúngicas (2424. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules. 2013;62:677-83. https://doi.org/10.1016/j.ijbiomac.2013.10.012 ), antibacteriales (2525. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research. 2004;339:2693-2700. https://doi.org/10.1016/j.carres.2004.09.007 -2727. Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers. 2011;83(2):438-46. https://doi.org/10.1016/j.carbpol.2010.08.004 ), promotoras del crecimiento en las plantas (2828. Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffe in green house. Biocatalysis and Agricultural Biotechnology. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001 -3030. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari, Pal A, Raliya P et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal Agricultural and Food Chemistry. 2016;64(31):6148-55. doi: https://doi.org/10.1021/acs.jafc.6b02239 ) y nano fertilizantes (3131. Corradini E, de Moura MR, Mattoso LHC. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters. 2010;4(8):509-15. https://doi.org/10.3144/expresspolymlett.2010.64 ).

Las NPQ han demostrado impactar en las características biofísicas de las plántulas de café incrementando el contenido de pigmentos, la velocidad de la fotosíntesis y la absorción de nutrientes, etc (3232. Dzung NA, Khanh VTP, Dzung TT. Research on impact of chitosan oligomers on biophysical characteristics growth, development and drought resistance of coffe. Carbohydrate Polymers. 2011;84(2):751-55. doi: https://doi.org/10.1016/j.carbpol.2010.07.066 ).

Aunque existen muchos trabajos sobre la aplicación de quitosano en la agricultura, no se han realizado muchos utilizando las NPQ. En la siguiente tabla se aprecian varias aplicaciones de los NPQ en diferentes cultivos (Tabla 1).

Tabla 1.  Aplicaciones de nanopartículas de quitosano en la agricultura
Compuestos Cultivos Aplicaciones Referencia
Nanopartículas de quitosano Fresa Protección postcosecha (3333. García-García DJ, Pérez -Sánchez GF, Hernández-Cocoletzi H, Sánchez-Arzubde MG, Luna-Guevara ML, Rubio-Rosas E, Krishnamoortthy R, Morán-Raya C. Chitosan coatings modified with nanostructured ZnO for the preservation of strawberries. Polymers (Basel). 2023 sep 15;15(18):3772. https://doi.org/10.3390/polym15183772 )
Nanopartículas de quitosano Café robusta Estimulación del crecimiento (2828. Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffe in green house. Biocatalysis and Agricultural Biotechnology. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001 )
Nanopartículas de quitosano Manzana Protección postcosecha (3434. Pilon L, Spricio PC, Miranda M, Moura MR, Assis OBG, Mattoso LHC. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science and Technology. 2014;50(2):440-48. https://doi.org/10.1111/ijfs.12616 )
Nanopartículas de quitosano-NPK Trigo Estimulación del crecimiento y rendimiento (3535. Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal Agricultural Research. 2016;14(1),e0902, eISSN:2171-9292. doi: http://dx.doi.org/10.5424/sjar/2016141-8205 )
Nanopartículas de quitosano Chile Actividad antifúngica (3636. Chookhongkha N, Sopondilok T, Photchanachai S. Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Horticulturae. 2013;973:231-37. doi: https://doi.org/10.17660/ActaHortic.2013.973.32 )
Nanopartículas de quitosano con cobre (Cu) Tomate Estimulador de la germinación, crecimiento y antifúngico (2929. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, et al. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules. 2015;75:346-53. https://doi.org/10.1016/j.ijbiomac.2015.01.027 )
Nanopartículas de quitosano/tripolifosfato Herbicida (3737. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environ-mentally safer alternative for weed control. Journal of Hazardous Materials. 2014; 278, 163-71. https://doi.org/10.1016/j.jhazmat.2014.05.079 )
Nanopartículas de quitosano-Cobre (Cu) Maíz Estimulador del crecimiento (3030. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari, Pal A, Raliya P et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal Agricultural and Food Chemistry. 2016;64(31):6148-55. doi: https://doi.org/10.1021/acs.jafc.6b02239 )

Obtención de nanopartículas de quitosano

 

Las nanopartículas de quitosano (NPQ) fueron descritas, por primera vez, en 1994 (3838. Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-Fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 1994;31(5):629-42. https://doi.org/10.1080/10601329409349743 ). Desde entonces, muchos métodos han sido empleados para la síntesis de nanopartículas de quitosano. Entre los diversos métodos se encuentran: gelación ionotrópica, pulverización/secado, coacervación/precipitación, emulsificación reversa y complejación polielectrolítica (Tabla 2).

Tabla 2.  Métodos más empleados para la obtención de nanopartículas de quitosano (NPQ)
Método Solución Problema Medio (Con) Agente de Formación de nanopartículas Separación de nanopartículas
Gelación Inotrópica (3939. Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsa P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimization of the preparative process and preliminary biological evaluation. Pharmaceutical Research. 2009;26(8):1918-30. https://doi.org/10.1007/s11095-009-9908-0 ) Solución de Quitosano Ácido acuoso (1mg/mL) Polianión de bajo peso molecular Tripolifosfato Pentasódico (TTP), Adenosintrifosfato (ATP) Centrifugación
Pulverización/Secado (4040. Kim LT, Wang SL, Hiep DM, Luoung PM, Vui NT, Dihn TM, Dzung NA. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates. 2014;40(6):2165-75. https://doi.org/10.1007/s11164-014-1594-9 ) Solución de Quitosano Ácido acuoso (HAc-0.5%v/v) Pulverización/ Gas de Secado Filtro
Coacervación/ Precipitación (4141. Tavares IS, Caroni ALPF, Neto AD, Pereira MR, Fonseca JLC. Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids Surfaces B: Biointerfaces. 2012;90:254-58. https://doi.org/10.1016/j.colsurfb.2011.10.025 ) Solución de Quitosano (Empleo de Surfactantes) Ácido acuoso Solución de Sulfato de Sodio Filtración con membranas de 400 nm.
Centrifugación
Emulsificación Reversa (4242. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal Controlled Release. 2001;74(1-3):317-323. https://doi.org/10.1016/s0168-3659(01)00342-x ) Solución de Quitosano Acuoso Agente Entrecruzante Covalente Decantación/ Dialización/ Liofilización
Complejación Polielectrolítica (4343. Agirre M, Zarate J, Ojeda E, Puras G, Desbrieres J, Pedraz JL. Low Molecular Weight Chitosan (LMWC)-based polyplexes for pDNA delivery: From bench to bedside. Polymers. 2014;6(6):1727-55. https://doi.org/10.3390/polym606172 ) Solución de Quitosano Ácido acuoso Polianión de naturaleza macromolecular Centrifugación

Aplicaciones de las nanopartículas de quitosano en el cultivo del arroz

 

Las dificultades para controlar las plagas, junto a la preocupación por el uso indiscriminado de pesticidas en la agricultura han sido objeto de intenso debate y discusión. Actualmente, se trabaja en buscar métodos alternativos de control de plagas, para reducir la dependencia de pesticidas sintéticos (4444. Kashya PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. 2015;77:36-51. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039 ). Es el caso de las nanopartículas de quitosano (NPQ) que se utilizaron como un vehículo del ácido protocatecuico (APC) para inducir la resistencia contra Pyricularia oryzae, donde las NPQ transportaban las moléculas de APC dentro de las células fúngicas, exhibiendo un fuerte efecto antimicrobiano sobre el hongo. Por lo que, se recomienda realizar pruebas en plantas de arroz in vitro para reafirmar esta posibilidad (4545. Pham TT, Nguyen TH, Thi TV, Nguyen TT, Le TD, Hoang Vo DM, et al. Investigation of chitosan nanoparticles loaded with protocatechuic acid (PCA) for resistance of Pyricularia oryzae fungus against rice blast. Polymers. 2019;11(177):1-10. https://doi.org/10.3390/polym110177 ). También, otros investigadores (4646. Sathiyabama M, Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. International Journal of Biological Macromolecules. 2020,153:297-304. doi: https://dx.doi.org/10.1016/j.ijbiomac.2020.03.001 ) obtuvieron nanopartículas de quitosano guar (NPQG) por el método de gelación iónica, la aplicaron a semilla de arroz y observaron estimulación en la germinación y crecimiento de las plántulas. Además, de demostrar la inhibición del crecimiento de dos patógenos que provocan daños al arroz: Pyricularia grisea y Xanthomonas oryzae, en condiciones in vitro. Estos mismos autores, trataron hojas de arroz de 30 días de edad con una solución de 0.1 % de NPQG, se incubaron por 24 h y, posteriormente, se inocularon con 0.5 mL por hoja de una concentración de 1x105 esporas/mL de P. grisea y, a los 14 días se evalúo la incidencia de la enfermedad y no se observaron síntomas de la misma.

Otras NPQ sintetizadas también por el método de gelificación iónica a la concentración de 0,0065 % se aplicaron en arroz de trasplante y después se inoculó con Xanthomonas oryzae pv. Los resultados mostraron que la aplicación de NPQ fue capaz de aumentar la expresión de genes de resistencia con respecto al control; sin embargo, no fue capaz de suprimir el desarrollo de la infección (4747. Siswanti S, Joko T, Subandiyah S. The role of nanochitosan on the expression of rice resistance genes against bacterial leaf blight. Journal Perlindungan Tanaman Indonesia, 2020, 24(2): 115-121 DOI: 10.22146/jpti.44418 Available online at http://jurnal.ugm.ac.id/jpti ISSN 1410-1637 (print), ISSN 2548-4788 (online)).

También otros investigadores (4848. Parthasarathy R, Jayabaskaran C, Manikandan A, Anusuya S. Synthesis of Nickel-Chitosan Nanoparticles for Controlling Blast Diseases in Asian Rice. Applied Biochemistry and Biotechnology. 2023, 195:2134-2148. https://doi.org/10.1007/s12010-022-04198-8 ) prepararon nanopartícula de quitosano-níquel (NPQ-Ni) utilizando cloruro de níquel y evaluaron el crecimiento e inhibición de Pyricularia oryzae. Para ello aplicaron de NPQ-Ni a semillas de arroz las cuales mostraron un aumento significativo en la germinación y longitud de brotes y raíces y número de raíces laterales sobre el control. Además, el tratamiento con nanopartículas en plantas en condiciones de invernadero demostró una mejora notable en las condiciones de crecimiento de las plantas y no mostró toxicidad. Además, se exhibieron síntomas reducidos de piriculariosis en hojas tratadas con nanopartículas sobre el control en condiciones de invernadero, mientras que mostraron una inhibición del micelio del 64 % en Placas de Petri. Todos estos resultados sugieren que las NPQ-Ni podrían utilizarse como promotor del crecimiento de las plantas y para controlar la enfermedad del añublo del arroz.

La estimulación del crecimiento de plántulas de arroz también fue apreciada por Panatda y Duangdao (4949. Panatda J, Duangdao C. Synthesized nanochitosan induced rice chitinase isoenzyme expression; application in brown planthopper (BPH) control. NU. International Journal of Science. 2015;12(1):25-37), quienes, primeramente, obtuvieron las NPQ y trataron las semillas de arroz a diferentes concentraciones (10, 50, 100 y 500 ppm) de este compuesto, a las dos semanas comprobaron que la mayor estimulación del crecimiento fue lograda con las concentraciones de 100, 50 y 10 ppm. Sin embargo, las plántulas obtenidas a partir de semillas tratadas a las concentraciones de 500 y 1000 ppm no sobrevivieron. Estas mismas plántulas fueron expuestas a saltamontes marrones (Chorthippus brunneus) y se le evaluó la actividad quitinasa. Observando un incremento moderado en la actividad de esta enzima en las plántulas que fueron tratadas con las concentraciones de 10, 50 y 100 ppm, y mostraron resistencia al ataque del patógeno con respecto al control, el cual consistió en plántulas obtenidas a partir de semillas tratadas con agua.

Divya y colaboradores (5050. Divya K, Vijayan S, Janardanan S, Jisha MS. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules. 2018. doi: https://dx.doi.org/10.1016/j.ijbiomac.2018.11.185 ) prepararon NPQ utilizando el método de gelación ionotrópica. Posteriormente, trataron semillas de arroz con diferentes concentraciones de NPQ (0.5, 1.0, 1.5, 2.0, 2.5 mg.mL-1) a diferentes tiempos de imbibición (15, 30, 60, 90 y 120 min). Los resultados mostraron que todos los tratamientos con NPQ fueron mejores que el control (sin tratamiento). El tratamiento de 1mg.mL-1 con 120 minutos de imbibición logró el más elevado porcentaje de germinación y mayores tasas de crecimiento (número de hojas, altura, masa y vigor de la planta) a los 21 días después de sembradas. Aplicando la misma concentración de NPQ (1mg mL-1) a la semilla de arroz, suelo, foliar y la combinación, el colectivo de autores (5151. Divya K, Thampi M, Vijayan S, Shabanamol S, Jisha MS. Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity. Archives of Microbiology. 2021 Dec 29;204(1):95. https://doi.org/10.1007/s00203-021-02669-w . PMID: 34964906.) encontraron que el tratamiento combinado de semilla, suelo y aplicación foliar era el más eficiente. También se estudió la toxicidad de NPQ en el suelo antes de su aplicación y se encontró que no era tóxico. Por su parte, Soni, Rookes, Arya (5252. Soni AT, Rookes JE, Arya SS. Chitosan nanoparticles as seed priming agents to alleviate salinity stress in rice (Oryza sativa L.) seedlings. Polysaccharides. 2023; 4(2):129-141; https://doi.org/10.3390/polysaccharides4020010 ) sintetizaron NPQ utilizando un método de gelificación iónica y aplicaron estos compuestos en semillas de arroz las cuales se cultivaron en concentraciones crecientes de NaCl. Donde se mostró un efecto significativamente mayor sobre la germinación, el vigor de las plántulas y las respuestas bioquímicas y antioxidantes en comparación con las semillas de control.

Nanopartículas de oligosacáridos de quitosano modificado con lantano fueron preparados por reticulación iónica y se aplicó a semillas de arroz a las concentraciones de 6.25, 12.5, 25, 50 y 100 μg mL-1 y sembradas en un hidropónico, a los 15 días se determinó la altura y la masa fresca de la parte área. Los resultados evidenciaron el incremento de estas variables con la aplicación del nanocompuesto con respecto al control (5353. Liang W, Yu A, Wang G, Zheng F, Hu P, Jia J et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydrate Polymers. 2018;199:437-44. doi: https://dx.doi.org/10.1016/j.carbpol.2018.07.042 ).

Conclusiones

 

En las investigaciones realizadas se demuestra que las NPQ tienen efecto positivo sobre diferentes cultivos, tanto in vitro como en condiciones semicontroladas. En el caso del arroz, han demostrado tener efecto bioestimulante y protector contra Pyricularia oryzae, por lo que estos compuestos pudieran ser utilizados en la agricultura haciéndola más sostenible.

Bibliografía

 

1. Bharadwaj DN. Chapter 2. Sustainable agriculture and plant breeding. En Al-Khayri JM, Mohan S, Johnson D (Eds.) Advances in plant breeding strategies: agronomic, abiotic and biotic stress. 2016, pp.3-34, Estados Unidos: Springer International Publishing. ISBN:978-3-319-22517-3 doi:10.1007/978-3-319-22518-0_1.

2. OCDE/FAO Perspectivas Agrícolas 2019-2028, OECD Publishing, París/Organización de las Naciones Unidas para la alimentación y la agricultura (FAO), Roma. 2019 https://doi.org/10.1787/7b2e8ba-es

3. Fried G, Chauvel B, Reynaud P, Sache I. Decreases in crop production by non-native weeds, pest and pathogen. En Vila M nd Hulme P. Impact of biological Invasions on Ecosystem Service. 2017; pp.83-101, Estados Unidos: Springer International Publishing. https://doi.org/10.1007/978-3-319-45121-3-6

4. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences. 2019; 1, 1446. doi: https://dx.doi.org/10.1007/s42452-019-1485-1

5. Lárez-Velásquez C. Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola. 2008; 8(1):1-22. ISSN-e 1317-9152

6. Rodríguez AT, Ramírez MA, Cárdenas RM, Hernández AN, Velázquez MG, Bautista S. Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology. 2007; 89(3):206-15, ISSN 0048-3575. https://doi.org/10.1016/j.pestbp.2007.06.007

7. Molina Zerpa JA, Colina Rincón M, Rincón A, Vargas Colina JA. Efecto del uso de quitosano en el mejoramiento del cultivo del arroz (Oryza sativa L. variedad sd20a). Revista de Investigación Agraria y Ambiental. 2017. 8(2),julio-diciembre, ISSN 2145-6097

8. Ramírez-Arrebato MA; Rodríguez-Pedroso AT, Bautista-Baños S, Ventura-Zapata E. Chapter 4. Chitosan Protection from Rice Diseases. 2016; p.115-126. In: Silvia Bautista-Baños editors: Chitosan in the Preservation of Agricultural Commodities, Oxford: Academic Press 366p. ISBN:9780128027356

9. Toan NV, Hanh TT. Application of chitosan solutions for rice production in Vietnam. African Journal of Biotechnology. 2013;12(4), 382-384, ISSN:1684-5315. https://doi.org/10.5897/AJB12.2884

10. Borja-Borja JM, Rojas-Oviedo BS. Nanomateriales: Métodos de síntesis. Polo Científico. 2020; 5(08) agosto: 426-445, ISSN:2550-682X. https://doi.org/10.23857//pc.v5i8.1597

11. Gulín-González. Tercer seminario internacional de nanociencias y nanotecnologías. Revista CENIC Ciencias Químicas. 2010;41(2) mayo-agosto:144-145, ISSN:1015-8553, http://www.redalyc.org/articulo.oa?id=181620526008

12. Lárez-Velásquez C, Koteich-Khatib S, López-González F. Capítulo 8. Quitosano y nanopartículas. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039

13. ISO/DTS 80004-2:2015. Nanotechnologies-Vocabulary-Part 2: Nano-objects. Disponible en: https://www.iso.org/standard/54440.html

14. Sotelo Boyás ME, Bautista Baños S, Aldana Llanos L, Solorza Feria J, Jiménez Aparicio A, Barrera Necha LL, et al. Capítulo 12. La nanotecnología en el control de microorganismos patógenos e insectos de importancia económica. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039. 2015. 295-309

15. Chen H, Yada R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Technology. 2011.22, 585-94. doi: https://doi.org/10.1016/j.tifs.2011.09.004

16. Ghormade V, Deshpande M, Paknikar. Perspectives for nano-biotecnology enable protection and nutrition of plants. Biotecnology Advances. 2011. 29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007

17. Dubey A, Mailapalli DR. Nanofertilizers, nano pesticides, nanosensors of pest and nanotoxicity in agricultore. En Lichtfouse E.(ed) Sustainable Agriculture Reviews. 2016;307-30. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-26777-7_7

18. Rameshaiah G, Pallavi J, Shabnam S. Nano fertilizers and nano sensors an attempt for developing smart agriculture. International Journal of Engineering Research and General Science. 2015; 3(1);314-20.ISSN 2091-2730

19. Cota O, Cortez M, Burgos A, Ezquerra J, Plasencia M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture. 2013;93(7):1525-36. https://doi.org/10.1002/jsfa.6060

20. Patil C, Borase H, Patil S, Salunkhe R, Salunke H. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypt and Anopheles stenphense and nontarget fish Poecillia reticulate. Parasitology Research. 2012; 111(2), 555-62. https://doi.org/10.1007/s00436-012-2867-0

21. Babu RB, O'Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials 2. 2013;8. doi: http://dx.doi.org/10.1186/2194-0517-2-8

22. Piras AM, Maisettab G, Sandreschia S, Esinb S, Gazzarria M, Batonib G, et al. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules. 2014;67:124-31. https://doi.org/10.1016/j.ibiomac.2014.03.016

23. Oh JW, Chun SC, Chandrasekaran M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to bacterial activities against phytopathogens of tomato. Agronomy. 2019;9(21):2-12. https://doi.org/10.3390/agronomy9010021

24. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules. 2013;62:677-83. https://doi.org/10.1016/j.ijbiomac.2013.10.012

25. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research. 2004;339:2693-2700. https://doi.org/10.1016/j.carres.2004.09.007

26. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers. 2009;75(3):385-89. https://doi.org/10.1016/j.carbpol.2008.07.039

27. Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers. 2011;83(2):438-46. https://doi.org/10.1016/j.carbpol.2010.08.004

28. Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffe in green house. Biocatalysis and Agricultural Biotechnology. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001

29. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, et al. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules. 2015;75:346-53. https://doi.org/10.1016/j.ijbiomac.2015.01.027

30. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari, Pal A, Raliya P et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal Agricultural and Food Chemistry. 2016;64(31):6148-55. doi: https://doi.org/10.1021/acs.jafc.6b02239

31. Corradini E, de Moura MR, Mattoso LHC. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters. 2010;4(8):509-15. https://doi.org/10.3144/expresspolymlett.2010.64

32. Dzung NA, Khanh VTP, Dzung TT. Research on impact of chitosan oligomers on biophysical characteristics growth, development and drought resistance of coffe. Carbohydrate Polymers. 2011;84(2):751-55. doi: https://doi.org/10.1016/j.carbpol.2010.07.066

33. García-García DJ, Pérez -Sánchez GF, Hernández-Cocoletzi H, Sánchez-Arzubde MG, Luna-Guevara ML, Rubio-Rosas E, Krishnamoortthy R, Morán-Raya C. Chitosan coatings modified with nanostructured ZnO for the preservation of strawberries. Polymers (Basel). 2023 sep 15;15(18):3772. https://doi.org/10.3390/polym15183772

34. Pilon L, Spricio PC, Miranda M, Moura MR, Assis OBG, Mattoso LHC. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science and Technology. 2014;50(2):440-48. https://doi.org/10.1111/ijfs.12616

35. Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal Agricultural Research. 2016;14(1),e0902, eISSN:2171-9292. doi: http://dx.doi.org/10.5424/sjar/2016141-8205

36. Chookhongkha N, Sopondilok T, Photchanachai S. Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Horticulturae. 2013;973:231-37. doi: https://doi.org/10.17660/ActaHortic.2013.973.32

37. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environ-mentally safer alternative for weed control. Journal of Hazardous Materials. 2014; 278, 163-71. https://doi.org/10.1016/j.jhazmat.2014.05.079

38. Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-Fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 1994;31(5):629-42. https://doi.org/10.1080/10601329409349743

39. Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsa P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimization of the preparative process and preliminary biological evaluation. Pharmaceutical Research. 2009;26(8):1918-30. https://doi.org/10.1007/s11095-009-9908-0

40. Kim LT, Wang SL, Hiep DM, Luoung PM, Vui NT, Dihn TM, Dzung NA. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates. 2014;40(6):2165-75. https://doi.org/10.1007/s11164-014-1594-9

41. Tavares IS, Caroni ALPF, Neto AD, Pereira MR, Fonseca JLC. Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids Surfaces B: Biointerfaces. 2012;90:254-58. https://doi.org/10.1016/j.colsurfb.2011.10.025

42. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal Controlled Release. 2001;74(1-3):317-323. https://doi.org/10.1016/s0168-3659(01)00342-x

43. Agirre M, Zarate J, Ojeda E, Puras G, Desbrieres J, Pedraz JL. Low Molecular Weight Chitosan (LMWC)-based polyplexes for pDNA delivery: From bench to bedside. Polymers. 2014;6(6):1727-55. https://doi.org/10.3390/polym606172

44. Kashya PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. 2015;77:36-51. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039

45. Pham TT, Nguyen TH, Thi TV, Nguyen TT, Le TD, Hoang Vo DM, et al. Investigation of chitosan nanoparticles loaded with protocatechuic acid (PCA) for resistance of Pyricularia oryzae fungus against rice blast. Polymers. 2019;11(177):1-10. https://doi.org/10.3390/polym110177

46. Sathiyabama M, Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. International Journal of Biological Macromolecules. 2020,153:297-304. doi: https://dx.doi.org/10.1016/j.ijbiomac.2020.03.001

47. Siswanti S, Joko T, Subandiyah S. The role of nanochitosan on the expression of rice resistance genes against bacterial leaf blight. Journal Perlindungan Tanaman Indonesia, 2020, 24(2): 115-121 DOI: 10.22146/jpti.44418 Available online at http://jurnal.ugm.ac.id/jpti ISSN 1410-1637 (print), ISSN 2548-4788 (online)

48. Parthasarathy R, Jayabaskaran C, Manikandan A, Anusuya S. Synthesis of Nickel-Chitosan Nanoparticles for Controlling Blast Diseases in Asian Rice. Applied Biochemistry and Biotechnology. 2023, 195:2134-2148. https://doi.org/10.1007/s12010-022-04198-8

49. Panatda J, Duangdao C. Synthesized nanochitosan induced rice chitinase isoenzyme expression; application in brown planthopper (BPH) control. NU. International Journal of Science. 2015;12(1):25-37

50. Divya K, Vijayan S, Janardanan S, Jisha MS. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules. 2018. doi: https://dx.doi.org/10.1016/j.ijbiomac.2018.11.185

51. Divya K, Thampi M, Vijayan S, Shabanamol S, Jisha MS. Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity. Archives of Microbiology. 2021 Dec 29;204(1):95. https://doi.org/10.1007/s00203-021-02669-w . PMID: 34964906.

52. Soni AT, Rookes JE, Arya SS. Chitosan nanoparticles as seed priming agents to alleviate salinity stress in rice (Oryza sativa L.) seedlings. Polysaccharides. 2023; 4(2):129-141; https://doi.org/10.3390/polysaccharides4020010

53. Liang W, Yu A, Wang G, Zheng F, Hu P, Jia J et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydrate Polymers. 2018;199:437-44. doi: https://dx.doi.org/10.1016/j.carbpol.2018.07.042

Cultivos Tropicales Vol. 46, No. 2, abril-junio 2025, ISSN: 1819-4087
 
Bibliographic review

Potentialities of chitosan nanoparticles in rice cultivation (Oryza sativa L.)

 

iDAida Tania Rodríguez Pedroso1Unidad Científico Tecnológica de Base “Los Palacios”. Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700*✉:atania@inca.edu.cu

iDMiguel Ángel Ramírez Arrebato1Unidad Científico Tecnológica de Base “Los Palacios”. Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700

iDMaribel Plascencia Jatomea2Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, PO Box 1658, Hermosillo, Sonora, México. CP 83 000


1Unidad Científico Tecnológica de Base “Los Palacios”. Instituto Nacional de Ciencias Agrícolas (INCA), carretera San José-Tapaste, km 3½, Gaveta Postal 1, San José de las Lajas, Mayabeque, Cuba. CP 32 700

2Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, PO Box 1658, Hermosillo, Sonora, México. CP 83 000

 

*Author for correspondence: atania@inca.edu.cu

Abstract

Chitosan nanoparticles (CSNP) are compounds that have great potential in modern agriculture due to the challenges they face such as climate change, the severity of diseases, and the limited availability of important nutrients for plants. Therefore, this article presents a review of the literature on CSNP, their different uses in agriculture, their methods of obtaining them, applications in rice cultivation as a biostimulant, antifungal and resistance inducer against Pyricularia oryzae.

Key words: 
germination, nanotechnology, biocomposite

Introduction

 

The growing world population demands food and other inputs, so the challenge facing agricultural researchers in the 21st century is to innovate and generate technologies to produce sufficient quantity and quality of food to feed the world's growing population, but without degrading soil health and agroecosystems (11. Bharadwaj DN. Chapter 2. Sustainable agriculture and plant breeding. En Al-Khayri JM, Mohan S, Johnson D (Eds.) Advances in plant breeding strategies: agronomic, abiotic and biotic stress. 2016, pp.3-34, Estados Unidos: Springer International Publishing. ISBN:978-3-319-22517-3 doi:10.1007/978-3-319-22518-0_1.). It has been estimated that world food production must increase by 70-100 % by 2050 to meet the ever-increasing demand of the world's growing population (22. OCDE/FAO Perspectivas Agrícolas 2019-2028, OECD Publishing, París/Organización de las Naciones Unidas para la alimentación y la agricultura (FAO), Roma. 2019 https://doi.org/10.1787/7b2e8ba-es ). However, agricultural production continues to be affected by a large number of insect pests, diseases, and weeds (33. Fried G, Chauvel B, Reynaud P, Sache I. Decreases in crop production by non-native weeds, pest and pathogen. En Vila M nd Hulme P. Impact of biological Invasions on Ecosystem Service. 2017; pp.83-101, Estados Unidos: Springer International Publishing. https://doi.org/10.1007/978-3-319-45121-3-6 ).

In recent decades, the use of agrochemicals (substances such as fungicides, insecticides, herbicides, rodenticides, fertilizers, plant growth stimulants, etc.) has increased in different crops, with China, the United States of America and Argentina being the main consumers of these products (44. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences. 2019; 1, 1446. doi: https://dx.doi.org/10.1007/s42452-019-1485-1 ).

Rice is one of the most demanded crops in the world and its consumption has increased in the last decades, with the consequent increase in the application of herbicides, insecticides and fungicides, during different phases of cultivation to increase its production.

In Cuba, rice is the staple food of the Cuban diet and the population's consumption is more than 75 kg per capita. It is highly dependent on chemical products for its production, which are highly expensive and toxic for man and the environment. For this reason, research is being carried out in the search for new natural, more economical, biodegradable and non-toxic products.

Among the compounds of natural origin and with a wide range of applications directly related to agriculture is chitin and, especially, its best known derivative: chitosan. This active principle has been used in the fungal protection of seeds and seedlings, as a biostimulant of growth and inducer of defense mechanisms in plants, in the post-harvest protection of flowers and fruits, in the manufacture of films for packaging agricultural products (55. Lárez-Velásquez C. Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola. 2008; 8(1):1-22. ISSN-e 1317-9152). In rice, this compound has demonstrated to have antimicrobial activity on pathogens of economic importance, to induce resistance and has stimulated seed germination, growth variables and yield components (66. Rodríguez AT, Ramírez MA, Cárdenas RM, Hernández AN, Velázquez MG, Bautista S. Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology. 2007; 89(3):206-15, ISSN 0048-3575. https://doi.org/10.1016/j.pestbp.2007.06.007 -99. Toan NV, Hanh TT. Application of chitosan solutions for rice production in Vietnam. African Journal of Biotechnology. 2013;12(4), 382-384, ISSN:1684-5315. https://doi.org/10.5897/AJB12.2884 ).

Therefore, the application of nanoparticles contributes to better plant nutrient uptake, resistance to damage, as well as improved yield and crop quality. There are different methods of synthesis of nanomaterials, these can be physical, chemical or where nanoparticles are deposited on supports such as: ionic adsorption, precipitation, colloid and photochemical (1010. Borja-Borja JM, Rojas-Oviedo BS. Nanomateriales: Métodos de síntesis. Polo Científico. 2020; 5(08) agosto: 426-445, ISSN:2550-682X. https://doi.org/10.23857//pc.v5i8.1597 ).

Due to the knowledge derived from the usefulness of this biocomposite, the way to optimize its applications in the agricultural area is being sought through nanotechnology as an integral strategy towards sustainability in productivity, in obtaining high yields and plant protection. The objective of this review is to document the potential of this new technology in economically important crops such as rice.

Development

 

Nanotechnology and its applications in agriculture

 

The so-called nanosciences and nanotechnologies have become the main areas of scientific technological development in the last twenty years (1111. Gulín-González. Tercer seminario internacional de nanociencias y nanotecnologías. Revista CENIC Ciencias Químicas. 2010;41(2) mayo-agosto:144-145, ISSN:1015-8553, http://www.redalyc.org/articulo.oa?id=181620526008 ). Nanotechnology is a new science that involves the manipulation and use of materials smaller than a micrometer.

The word nano is a prefix whose meaning is dwarf, an adjective applied to indicate smaller than average size, usually of a person. When used as a prefix to a unit of measurement, it means one billionth of a unit of measurement (1 nano= 1x10-9) (1212. Lárez-Velásquez C, Koteich-Khatib S, López-González F. Capítulo 8. Quitosano y nanopartículas. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039 ). According to the definition of the International Organization for Standardization (ISO), nanoparticles (NPs) are considered to be those portions of matter whose three external dimensions fall within the nanoscale range (between 1-100 nm) (1313. ISO/DTS 80004-2:2015. Nanotechnologies-Vocabulary-Part 2: Nano-objects. Disponible en: https://www.iso.org/standard/54440.html ). The strength of nanotechnology lies basically in making more efficient, multifunctional and raw material-saving products. Within the global nanotechnology market, interest in NPs and nanocomposites is increasing. In recent years, the study of nanomaterials (NMs) and nanostructured materials, whose main characteristic is the size of the phases involved, which is in the order of nanometers (1414. Sotelo Boyás ME, Bautista Baños S, Aldana Llanos L, Solorza Feria J, Jiménez Aparicio A, Barrera Necha LL, et al. Capítulo 12. La nanotecnología en el control de microorganismos patógenos e insectos de importancia económica. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039. 2015. 295-309 ), has become more widespread.

Among the applications that nanotechnology is considering in the agricultural sector is the development of chemicals such as fertilizers, herbicides and growth regulators to increase agricultural production. Other applications in this sector are nanosensors for the detection of plant pathogens and the use of NMs for the stabilization of biopesticides, among others (1515. Chen H, Yada R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Technology. 2011.22, 585-94. doi: https://doi.org/10.1016/j.tifs.2011.09.004 ,1616. Ghormade V, Deshpande M, Paknikar. Perspectives for nano-biotecnology enable protection and nutrition of plants. Biotecnology Advances. 2011. 29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007 ). As advantages, it allows minimizing nutrient losses in fertilization and improving crop productivity by optimizing the use of water and nutrients (1717. Dubey A, Mailapalli DR. Nanofertilizers, nano pesticides, nanosensors of pest and nanotoxicity in agricultore. En Lichtfouse E.(ed) Sustainable Agriculture Reviews. 2016;307-30. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-26777-7_7 ,1818. Rameshaiah G, Pallavi J, Shabnam S. Nano fertilizers and nano sensors an attempt for developing smart agriculture. International Journal of Engineering Research and General Science. 2015; 3(1);314-20.ISSN 2091-2730).

It has been demonstrated that the encapsulation of active ingredients in NPs increases the efficacy of their chemical ingredients, since they allow reducing their volatilization, leaching and can reduce the toxicity and contamination of agroecosystems using these nanoproducts (1919. Cota O, Cortez M, Burgos A, Ezquerra J, Plasencia M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture. 2013;93(7):1525-36. https://doi.org/10.1002/jsfa.6060 ). NPs used to improve the efficiency of pesticides allow lower doses of the product to be applied in the field (2020. Patil C, Borase H, Patil S, Salunkhe R, Salunke H. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypt and Anopheles stenphense and nontarget fish Poecillia reticulate. Parasitology Research. 2012; 111(2), 555-62. https://doi.org/10.1007/s00436-012-2867-0 ).

Applications of chitosan nanoparticles in agriculture

 

In recent years numerous biopolymers such as starch, cellulose, alginate, chitin and chitosan have been used for the development of new materials with environmental sustainability and desirable functionality (2121. Babu RB, O'Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials 2. 2013;8. doi: http://dx.doi.org/10.1186/2194-0517-2-8 ).

As for chitosan, it is a deacetylated form of chitin, which is a linear copolymer of 2-acetamide-e-deoxy-β-D-glucopyranose and 2-amino-2-deoxy-β-D-glucopyranose. This polymer is the second most abundant in nature after cellulose and is found in the exoskeleton of crustaceans, cuticle of insects and cell wall of fungi (2222. Piras AM, Maisettab G, Sandreschia S, Esinb S, Gazzarria M, Batonib G, et al. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules. 2014;67:124-31. https://doi.org/10.1016/j.ibiomac.2014.03.016 ). Among its advantageous properties are: abundance, biocompatibility, biodegradability, safety and non-toxicity. In addition to their physical and chemical characteristics, such as size, surface area, cationic nature, active functional groups, greater encapsulation efficiency, ease of mixing with other components (2323. Oh JW, Chun SC, Chandrasekaran M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to bacterial activities against phytopathogens of tomato. Agronomy. 2019;9(21):2-12. https://doi.org/10.3390/agronomy9010021 ). Therefore, chitosan nanoparticles (CSNP) can be applied as antifungals (2424. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules. 2013;62:677-83. https://doi.org/10.1016/j.ijbiomac.2013.10.012 ), antibacterials (2525. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research. 2004;339:2693-2700. https://doi.org/10.1016/j.carres.2004.09.007 -2727. Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers. 2011;83(2):438-46. https://doi.org/10.1016/j.carbpol.2010.08.004 ), plant growth promoters (2828. Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffe in green house. Biocatalysis and Agricultural Biotechnology. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001 -3030. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari, Pal A, Raliya P et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal Agricultural and Food Chemistry. 2016;64(31):6148-55. doi: https://doi.org/10.1021/acs.jafc.6b02239 ) and nano fertilizers (3131. Corradini E, de Moura MR, Mattoso LHC. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters. 2010;4(8):509-15. https://doi.org/10.3144/expresspolymlett.2010.64 ).

CSNPs have been shown to impact the biophysical characteristics of coffee seedlings by increasing pigment content, photosynthesis rate and nutrient uptake, etc (3232. Dzung NA, Khanh VTP, Dzung TT. Research on impact of chitosan oligomers on biophysical characteristics growth, development and drought resistance of coffe. Carbohydrate Polymers. 2011;84(2):751-55. doi: https://doi.org/10.1016/j.carbpol.2010.07.066 ).

Although there are many works on the application of chitosan in agriculture, not many have been carried out using CSNPs. Several applications of CSNPs in different crops are shown in the following table (Table 1).

Table 1.  Applications of chitosan nanoparticles in agriculture
Compounds Crops Applications Reference
Chitosan nanoparticles Strawberry Postharvest protection (3333. García-García DJ, Pérez -Sánchez GF, Hernández-Cocoletzi H, Sánchez-Arzubde MG, Luna-Guevara ML, Rubio-Rosas E, Krishnamoortthy R, Morán-Raya C. Chitosan coatings modified with nanostructured ZnO for the preservation of strawberries. Polymers (Basel). 2023 sep 15;15(18):3772. https://doi.org/10.3390/polym15183772 )
Chitosan nanoparticles Robusta coffee Growth stimulation (2828. Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffe in green house. Biocatalysis and Agricultural Biotechnology. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001 )
Chitosan nanoparticles Apple Postharvest protection (3434. Pilon L, Spricio PC, Miranda M, Moura MR, Assis OBG, Mattoso LHC. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science and Technology. 2014;50(2):440-48. https://doi.org/10.1111/ijfs.12616 )
Chitosan nanoparticles -NPK Wheat Growth and yield stimulation (3535. Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal Agricultural Research. 2016;14(1),e0902, eISSN:2171-9292. doi: http://dx.doi.org/10.5424/sjar/2016141-8205 )
Chitosan nanoparticles Chili Antifungal activity (3636. Chookhongkha N, Sopondilok T, Photchanachai S. Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Horticulturae. 2013;973:231-37. doi: https://doi.org/10.17660/ActaHortic.2013.973.32 )
Chitosan nanoparticles with copper (Cu) Tomato Germination, growth and antifungal stimulator (2929. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, et al. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules. 2015;75:346-53. https://doi.org/10.1016/j.ijbiomac.2015.01.027 )
Chitosan nanoparticles/tripolyphosphate Herbicide (3737. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environ-mentally safer alternative for weed control. Journal of Hazardous Materials. 2014; 278, 163-71. https://doi.org/10.1016/j.jhazmat.2014.05.079 )
Chitosan nanoparticles-Copper (Cu) Maize Growth stimulator (3030. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari, Pal A, Raliya P et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal Agricultural and Food Chemistry. 2016;64(31):6148-55. doi: https://doi.org/10.1021/acs.jafc.6b02239 )

Obtaining chitosan nanoparticles

 

Chitosan nanoparticles (CSNPs) were first described in 1994 (3838. Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-Fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 1994;31(5):629-42. https://doi.org/10.1080/10601329409349743 ). Since then, many methods have been employed for the synthesis of chitosan nanoparticles. Among the various methods are ionotropic gelation, sputtering/drying, coacervation/precipitation, reverse emulsification, and polyelectrolyte complexation (Table 2).

Table 2.  Most commonly used methods for obtaining chitosan nanoparticles (CSNP)
Method Solution Problem Medium (with) Nanoparticle forming agent Separation of nanoparticles
Inotropic Gelation (3939. Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsa P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimization of the preparative process and preliminary biological evaluation. Pharmaceutical Research. 2009;26(8):1918-30. https://doi.org/10.1007/s11095-009-9908-0 ) Solution of Chitosan Aqueous acid (1mg/mL) Low molecular weight polyanion Pentasodium Tripolyphosphate (TTP), Adenosinetriphosphate (ATP) Centrifugation
Spraying/Drying (4040. Kim LT, Wang SL, Hiep DM, Luoung PM, Vui NT, Dihn TM, Dzung NA. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates. 2014;40(6):2165-75. https://doi.org/10.1007/s11164-014-1594-9 ) Solution of Chitosan Aqueous acid (HAc-0.5 % v/v) Spraying/ Drying Gas Filter
Coacervation/ Precipitation (4141. Tavares IS, Caroni ALPF, Neto AD, Pereira MR, Fonseca JLC. Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids Surfaces B: Biointerfaces. 2012;90:254-58. https://doi.org/10.1016/j.colsurfb.2011.10.025 ) Solution of Chitosan (Use of Surfactants) Aqueous acid Sodium Sulfate Solution -Filtration with 400 nm membranes. -Centrifugation
Reverse emulsification (4242. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal Controlled Release. 2001;74(1-3):317-323. https://doi.org/10.1016/s0168-3659(01)00342-x ) Solution of Chitosan Aqueous Covalent Crosslinking Agent Decanting/ Dialyzation/ Lyophilization
Polyelectrolyte Complexation (4343. Agirre M, Zarate J, Ojeda E, Puras G, Desbrieres J, Pedraz JL. Low Molecular Weight Chitosan (LMWC)-based polyplexes for pDNA delivery: From bench to bedside. Polymers. 2014;6(6):1727-55. https://doi.org/10.3390/polym606172 ) Solution of Chitosan Aqueous acid Polyanion of macromolecular nature Centrifugation

Applications of chitosan nanoparticles in rice cultivation

 

Difficulties in controlling pests, together with the concern about the indiscriminate use of pesticides in agriculture have been the subject of intense debate and discussion. Currently, work is being done to find alternative methods of pest control to reduce dependence on synthetic pesticides (4444. Kashya PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. 2015;77:36-51. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039 ). This is the case of chitosan nanoparticles (CSNP) that were used as a vehicle for protocatechuic acid (PCA) to induce resistance against Pyricularia oryzae, where CSNP transported PCA molecules into fungal cells, exhibiting a strong antimicrobial effect on the fungus. Therefore, tests on rice plants in vitro are recommended to reaffirm this possibility (4545. Pham TT, Nguyen TH, Thi TV, Nguyen TT, Le TD, Hoang Vo DM, et al. Investigation of chitosan nanoparticles loaded with protocatechuic acid (PCA) for resistance of Pyricularia oryzae fungus against rice blast. Polymers. 2019;11(177):1-10. https://doi.org/10.3390/polym110177 ). Also, other researchers (4646. Sathiyabama M, Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. International Journal of Biological Macromolecules. 2020,153:297-304. doi: https://dx.doi.org/10.1016/j.ijbiomac.2020.03.001 ) obtained chitosan guar nanoparticles (CSNPG) by the ionic gelation method, applied it to rice seed and observed stimulation in germination and seedling growth. In addition, they demonstrated the inhibition of the growth of two pathogens that cause damage to rice: Pyricularia grisea and Xanthomonas oryzae, under in vitro conditions. These same authors treated 30-day-old rice leaves with a 0.1 % solution of CSNPG, incubated them for 24 h and then inoculated them with 0.5 mL per leaf of a concentration of 1x105 spores/mL of P. grisea and, after 14 days, the incidence of the disease was evaluated and no symptoms of the disease were observed.

Other CSNP synthesized also by the ionic gelation method at the concentration of 0.0065 % were applied on transplant rice and then inoculated with Xanthomonas oryzae pv. The results showed that the application of CSNP was able to increase the expression of resistance genes with respect to the control; however, it was not able to suppress the development of the infection (4747. Siswanti S, Joko T, Subandiyah S. The role of nanochitosan on the expression of rice resistance genes against bacterial leaf blight. Journal Perlindungan Tanaman Indonesia, 2020, 24(2): 115-121 DOI: 10.22146/jpti.44418 Available online at http://jurnal.ugm.ac.id/jpti ISSN 1410-1637 (print), ISSN 2548-4788 (online)).

Other researchers (4848. Parthasarathy R, Jayabaskaran C, Manikandan A, Anusuya S. Synthesis of Nickel-Chitosan Nanoparticles for Controlling Blast Diseases in Asian Rice. Applied Biochemistry and Biotechnology. 2023, 195:2134-2148. https://doi.org/10.1007/s12010-022-04198-8 ) also prepared a nickel-chitosan nanoparticle (CSNP-Ni) using nickel chloride and evaluated the growth and inhibition of Pyricularia oryzae. For this purpose, they applied CSNP-Ni to rice seeds, which showed a significant increase in germination, shoot and root length and number of lateral roots over the control. In addition, treatment with nanoparticles on plants under greenhouse conditions showed a remarkable improvement in plant growth conditions and showed no toxicity. In addition, reduced symptoms of pyriculariosis were exhibited in leaves treated with nanoparticles over the control under greenhouse conditions, while they showed 64 % mycelial inhibition in Petri dishes. All these results suggest that CSNP-Ni could be used as a plant growth promoter and to control rice blast disease.

Growth stimulation of rice seedlings was also appreciated (4949. Panatda J, Duangdao C. Synthesized nanochitosan induced rice chitinase isoenzyme expression; application in brown planthopper (BPH) control. NU. International Journal of Science. 2015;12(1):25-37), who, first, obtained CSNP and treated rice seeds at different concentrations (10, 50, 100 and 500 ppm) of this compound, after two weeks they found that the highest growth stimulation was achieved with the concentrations of 100, 50 and 10 ppm. However, seedlings obtained from seeds treated at the 500 and 1000 ppm concentrations did not survive. These same seedlings were exposed to brown grassthoppers (Chorthippus brunneus) and evaluated for chitinase activity. A moderate increase in the activity of this enzyme was observed in the seedlings that were treated with concentrations of 10, 50 and 100 ppm, and showed resistance to pathogen attack with respect to the control, which consisted of seedlings obtained from seeds treated with water.

Divya and coworkers (5050. Divya K, Vijayan S, Janardanan S, Jisha MS. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules. 2018. doi: https://dx.doi.org/10.1016/j.ijbiomac.2018.11.185 ) prepared CSNP using the ionotropic gelation method. Subsequently, they treated rice seeds with different concentrations of CSNP (0.5, 1.0, 1.5, 1.5, 2.0, 2.5 mg mL-1) at different imbibition times (15, 30, 60, 90 and 120 min). The results showed that all CSNP treatments were better than the control (no treatment). The 1mg mL-1 treatment with 120 min imbibition achieved the highest germination percentage and higher growth rates (number of leaves, height, mass and plant vigor) 21 days after planting. Applying the same concentration of CSNP (1mg mL-1) to rice seed, soil, foliar and combination, the authors (5151. Divya K, Thampi M, Vijayan S, Shabanamol S, Jisha MS. Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity. Archives of Microbiology. 2021 Dec 29;204(1):95. https://doi.org/10.1007/s00203-021-02669-w . PMID: 34964906.) found that the combined treatment of seed, soil and foliar application was the most efficient. The toxicity of CSNP in soil prior to application was also studied and found to be non-toxic. Some authors synthesized CSNP using an ionic gelation method and applied these compounds to rice seeds which were grown in increasing concentrations of NaCl (5252. Soni AT, Rookes JE, Arya SS. Chitosan nanoparticles as seed priming agents to alleviate salinity stress in rice (Oryza sativa L.) seedlings. Polysaccharides. 2023; 4(2):129-141; https://doi.org/10.3390/polysaccharides4020010 ). Where they showed a significantly greater effect on germination, seedling vigor, biochemical and antioxidant responses compared to control seeds.

Lanthanum-modified chitosan oligosaccharide nanoparticles were prepared by ionic cross-linking and applied to rice seeds at the concentrations of 6.25, 12.5, 25, 50 and 100 μg mL-1 and sown in a hydroponic, after 15 days the height and fresh mass of the area part were determined. The results showed an increase in these variables with the application of the nanocomposite with respect to the control (5353. Liang W, Yu A, Wang G, Zheng F, Hu P, Jia J et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydrate Polymers. 2018;199:437-44. doi: https://dx.doi.org/10.1016/j.carbpol.2018.07.042 ).

Conclusions

 

Research has shown that CSNPs have a positive effect on different crops, both in vitro and under semi-controlled conditions. In the case of rice, they have been shown to have a biostimulant and protective effect against Pyricularia oryzae, so these compounds could be used in agriculture, making it more sustainable.