La tolerancia de las semillas a la desecación y su implicación en la conservación del germoplasma

Contenido principal del artículo

María de los Ángeles Torres Mederos

Resumen

Este trabajo resume investigaciones enfocadas a estudiar la tolerancia de las semillas a la desecación y las formas establecidas para preservarlas; así como las propiedades del estado sólido del citoplasma de las semillas tolerantes desecadas. También, incluye las características de las semillas sensibles a la desecación y el procedimiento general para su conservación a largo plazo. Se hace referencia, a partir de diferentes trabajos, al modelo conceptual que incorpora los efectos espacial y temporal de la pérdida de agua para explicar la compresión celular como origen del daño por desecación, y la protección que ejercen las reservas de materia seca a la estabilidad del citoplasma solidificado y la longevidad de las semillas.

Detalles del artículo

Cómo citar
Torres Mederos, M. de los Ángeles. (2024). La tolerancia de las semillas a la desecación y su implicación en la conservación del germoplasma. Cultivos Tropicales, 45(4), https://cu-id.com/2050/v45n4e07. Recuperado a partir de https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1820
Sección
Revisión Bibliográfica

Citas

FAO. Normas para bancos de germoplasma de recursos fitogenéticos para la alimentación y la agricultura “[Internet]”. Edición revisada. Roma. 2014; 167 p. E-ISBN 978-92-5-308262-9. Available from: https://www.fao.org

Walters C, Pence VC. The unique role of seed banking and cryobiotechnologies in plant conservation. Plant People Planet PPP. 2020. 9 p. doi: 10.1002/ppp3.10121

Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. Journal of Experimental Botany 2017; 68: 827–41. doi: 10.1093/jxb/erw363

Hay FR, Davies RM, Dickie JB, Merritt DJ, Wolkis DM. More on seedlongevity phenotyping. Seed Science Research. 2022;1–6.doi.10.1017/S0960258522000034

Walters C, Wheeler LM, Grotenhuis JM. Longevity of seeds stored in a genebank: species characteristics. Seed Science Research 2005; 15: 1 – 20.doi:10.1079/SSR2004195

Walters, C. Genebanking seeds from natural populations. Natural Areas Journal, 2015a; 35(1): 98–106. doi.org/10.3375/043.035.0114

Roberts, E.H. Predicting the storage life of seeds “[Internet]”. Seed Science and Technology. 1973; 1: 499–14. Available from: https://www.scirp.org

Ellis RH, Roberts EH. 1980. Improved equations for the prediction of seed longevity “[Internet]”. Ann Bot; 1980; 45:13–3077. Available from: https://www.jstor.org

Pammenter NW, Berjak P. Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. Int. J. Plant Sci. 2014; 175(1):21–28. doi:10.1086/673302

Ballesteros D, Walters C. Solid-state biology and seed longevity: a mechanical analysis of glasses in pea and soybean embryonic axes. Frontiers Plant Science. 2019; 10: 920.doi: 10,3389/fpls.2019.00920.

Ballesteros D, Walters C. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. The Plant Journal; 2011(68): 607–19.doi:10.1111/j.1365-313X.2011. 04711.x

Walters C, Ballesteros D, Vertucci BA. Structural mechanics of seed deterioration: Standing the test of time. Plant Science. 2010; 179: 565–573. doi: 10.1016/j.plantsci.2010.06.016

Buitink J, Leprince O, Hemminga MA, Hoekstra F. Molecular mobility in the cytoplasm: an approach to describe and predict lifespan of dry germplasm. Proc. Natl Acad. Sci. USA. 2000; 97: 2385–90.doi. 10.1073/pnas.04055479_7

Williams RJ. Methods for determination of glass transitions in seeds. Ann. Bot.1994; 74: 525–30. doi: 10.1006/anbo.1994.1150

Ballesteros D, Pence VC. Survival and death of seeds during liquid nitrogen

storage: a case study on seeds with short lifespans.. CryoLetters 2017; 38 (4), 278-289. PMDI:29734429

Hugh W, Pritchard HW, Nadarajan J. Cryopreservation of orthodox (desiccation tolerant) seeds In: Reed BM, editor. Plant Cryopreservation: A Practical Guide. Springer. 2008. p. 485-94.

Pammenter NW, Berjark, P. Evolutionary and ecological aspects of recalcitrant seed biology. Seed Science Research. 2000; 10, 301–306. doi: 10.1017/SO960258500000349

Daws MI, Garwood NC, Pritchard HW. Prediction of Desiccation Sensitivity in Seeds of Woody Species: A Probabilistic Model Based on Two Seed Traits and 104 Species. Annals of Botany2006; 97: 667–74. doi:10.1093/aob/mcl022

Millennium Seed Bank Kew. Identifying desiccation –sensitive seeds. Technical Information Sheet 10 “[Internet]”. 2022, Board of Trustees of the Royal Botanic Gardens, Kew. Available from:msbtraining@kew.org, brahmsonline.kew.org/msbp

Engelmann F. Cryopreservation of embryos: an overview. In: Thorpe TA, Yeung EC, editors. Plant embryo culture: methods and protocols. Methods in Molecular Biology, vol 710. Humana Press,2011, p 155-184.doi: 10.1007/978-1-61737-988-8_13

Pammenter NW, Berjak P. Development of the understanding of seed recalcitrant and implications for ex situ conservation “[Internet]”. Biotecnología Vegetal 2013; 13 (3):131-44. ISSN 2074-8647 . Available from: https://revista.ibp.co.cu

Ballesteros D, Sershen, Varghese B, Berjak P, W. Pammenter NW. Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: Challenges and considerations for cryopreservation. Cryobiology. 2014; 69: 100-09. doi: 10.1016/j.cryobiol.2014.05.010

Berjark P, Pammenter NW. Translating theory into practice for conservation of germplasm of recalcitrant-seeded species. Biotecnología Vegetal. 2013; 13 (2):75-92 ISSN 2074-8647

Walters, C. Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta. 2015; 242:397–406. doi: 10.1007/s00425-015-2312-6.

Ballesteros D, Pritchard HW, Walters C Dry architecture: towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Science Research. 2020; 30:142–155. doi:10.1017/S0960258520000239

Pérez H, Hill LM, Walters C. A Protective Role for Accumulated Dry Matter Reserves in Seeds During Desiccation: Implications for Conservation. In: Chong PA, Newman DJ, Steinmacher DA, editors. Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery. Springer. 2020. p.133-42.doi: 10.1007/978-3-030-51358-0_8

Pérez-Rodríguez, Torrecilla Guerra G, Ruiz Padrón O, Rodríguez Escriba RC Lorente González GY, Martínez Montero ME, González Olmedo JL. Efecto de la madurez en la crioconservación de semillas de Nicotiana tabacumL. Cultivos Tropicales, 2016; 37, no. especial, 99-105. doi: 10.13140/RG.2.1.2831.8320.

Reino-Molina JJ, Montejo-Valdés LA, Sánchez-Rendón JA, Martín Martín GJ. Características seminales de cinco variedades de morera (Morus alba L.) cosechadas en Matanzas, Cuba “[Internet]”. Pastos y Forrajes, 2017; 40 (4) 276-80. Available from: https://scielo.sld.cu

Ntuli, TM. Drought and desiccation tolerance and sensitivity in plants. Botany, 2012; 29-50 Available from: https://www.researchgate.net/publication/221929147

Farrant MJ, Cooper K, Hilgart A, Abdalla KA, Bentley J, Thomson JA. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscose (Baker). Planta. 2015; 242:407–26. doi:10.1007/s00425-015-2320-6

Farrant JM. Mechanisms of desiccation tolerance in angiosperm resurrection plants. In: Jenks MA, Wood AJ, editors. Plant Desiccation Tolerance. Blackwell Publishing. 2007. p. 11-50.doi: 10.1002/9780470376861.ch3

Ellis RH, Hong TD, Roberts EH.) An intermediate category of seed storage behaviour? I “[Internet]”. Coffee. Journal of Experimental Botany. 1990; 41:1167–74. Available from: https://www.jstor.org/stable/23695125

Artículos más leídos del mismo autor/a