Potencialidades de las nanopartículas de quitosano en el cultivo del arroz (Oryza sativa L.)
Contenido principal del artículo
Resumen
Las nanopartículas de quitosano (NPQ) son compuestos que tienen un gran potencial en la agricultura moderna debido a los desafíos que esta enfrenta como el cambio climático, la severidad de las enfermedades y la limitada disponibilidad de importantes nutrientes para las plantas. Por lo que, este artículo presenta una revisión de la literatura sobre las NPQ, sus diferentes usos en la agricultura, métodos de obtención, las aplicaciones en el cultivo del arroz como bioestimulante, antifúngico e inductor de resistencia contra Pyricularia oryzae.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
Bharadwaj DN. Chapter 2. Sustainable agriculture and plant breeding. En Al-Khayri JM, Mohan S, Johnson D (Eds.) Advances in plant breeding strategies: agronomic, abiotic and biotic stress. 2016, pp.3-34, Estados Unidos: Springer International Publishing. ISBN:978-3-319-22517-3 doi:10.1007/978-3-319-22518-0_1.
OCDE/FAO Perspectivas Agrícolas 2019-2028, OECD Publishing, París/Organización de las Naciones Unidas para la alimentación y la agricultura (FAO), Roma. 2019 https://doi.org/10.1787/7b2e8ba-es
Fried G, Chauvel B, Reynaud P, Sache I. Decreases in crop production by non-native weeds, pest and pathogen. En Vila M nd Hulme P. Impact of biological Invasions on Ecosystem Service. 2017; pp.83-101, Estados Unidos: Springer International Publishing. https://doi.org/10.1007/978-3-319-45121-3-6
Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences. 2019; 1, 1446. doi: https://dx.doi.org/10.1007/s42452-019-1485-1
Lárez-Velásquez C. Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola. 2008; 8(1):1-22. ISSN-e 1317-9152
Rodríguez AT, Ramírez MA, Cárdenas RM, Hernández AN, Velázquez MG, Bautista S. Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology. 2007; 89(3):206–15, ISSN 0048-3575. https://doi.org/10.1016/j.pestbp.2007.06.007
Molina Zerpa JA, Colina Rincón M, Rincón A, Vargas Colina JA. Efecto del uso de quitosano en el mejoramiento del cultivo del arroz (Oryza sativa L. variedad sd20a). Revista de Investigación Agraria y Ambiental. 2017. 8(2),julio-diciembre, ISSN 2145-6097
Ramírez-Arrebato MA; Rodríguez-Pedroso AT, Bautista-Baños S, Ventura-Zapata E. Chapter 4. Chitosan Protection from Rice Diseases. 2016; p.115-126. In: Silvia Bautista-Baños editors: Chitosan in the Preservation of Agricultural Commodities, Oxford: Academic Press 366p. ISBN:9780128027356
Toan NV, Hanh TT. Application of chitosan solutions for rice production in Vietnam. African Journal of Biotechnology. 2013;12(4), 382-384, ISSN:1684-5315. https://doi.org/10.5897/AJB12.2884
Borja-Borja JM, Rojas-Oviedo BS. Nanomateriales: Métodos de síntesis. Polo Científico. 2020; 5(08) agosto: 426-445, ISSN:2550-682X. https://doi.org/10.23857//pc.v5i8.1597
Gulín-González. Tercer seminario internacional de nanociencias y nanotecnologías. Revista CENIC Ciencias Químicas. 2010;41(2) mayo-agosto:144-145, ISSN:1015-8553, http://www.redalyc.org/articulo.oa?id=181620526008
Lárez-Velásquez C, Koteich-Khatib S, López-González F. Capítulo 8. Quitosano y nanopartículas. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039
ISO/DTS 80004-2:2015. Nanotechnologies-Vocabulary-Part 2: Nano-objects. Disponible en: https://www.iso.org/standard/54440.html
Sotelo Boyás ME, Bautista Baños S, Aldana Llanos L, Solorza Feria J, Jiménez Aparicio A, Barrera Necha LL, et al. Capítulo 12. La nanotecnología en el control de microorganismos patógenos e insectos de importancia económica. En: Nanotecnología y aplicaciones. Editores: Lárez-Velásquez C, Koteich-Khatib S, López-González F. 2015, 203-223. ISBN 978-980-12-8382-9. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039. 2015. 295-309
Chen H, Yada R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Technology. 2011.22, 585-94. doi: https://doi.org/10.1016/j.tifs.2011.09.004
Ghormade V, Deshpande M, Paknikar. Perspectives for nano-biotecnology enable protection and nutrition of plants. Biotecnology Advances. 2011. 29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007
Dubey A, Mailapalli DR. Nanofertilizers, nano pesticides, nanosensors of pest and nanotoxicity in agricultore. En Lichtfouse E.(ed) Sustainable Agriculture Reviews. 2016;307-30. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-26777-7_7
Rameshaiah G, Pallavi J, Shabnam S. Nano fertilizers and nano sensors an attempt for developing smart agriculture. International Journal of Engineering Research and General Science. 2015; 3(1);314-20.ISSN 2091-2730
Cota O, Cortez M, Burgos A, Ezquerra J, Plasencia M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture. 2013;93(7):1525-36. https://doi.org/10.1002/jsfa.6060
Patil C, Borase H, Patil S, Salunkhe R, Salunke H. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypt and Anopheles stenphense and nontarget fish Poecillia reticulate. Parasitology Research. 2012; 111(2), 555-62. https://doi.org/10.1007/s00436-012-2867-0
Babu RB, O'Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials 2. 2013;8. doi: http://dx.doi.org/10.1186/2194-0517-2-8
Piras AM, Maisettab G, Sandreschia S, Esinb S, Gazzarria M, Batonib G, et al. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules. 2014;67:124-31. https://doi.org/10.1016/j.ibiomac.2014.03.016
Oh JW, Chun SC, Chandrasekaran M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to bacterial activities against phytopathogens of tomato. Agronomy. 2019;9(21):2-12. https://doi.org/10.3390/agronomy9010021
Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules. 2013;62:677-83. https://doi.org/10.1016/j.ijbiomac.2013.10.012
Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research. 2004;339:2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
Du WL, Niu SS, Xu YL, Xu ZR, Fan CL. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers. 2009;75(3):385-89. https://doi.org/10.1016/j.carbpol.2008.07.039
Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers. 2011;83(2):438-46. https://doi.org/10.1016/j.carbpol.2010.08.004
Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffe in green house. Biocatalysis and Agricultural Biotechnology. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001
Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, et al. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules. 2015;75:346-53. https://doi.org/10.1016/j.ijbiomac.2015.01.027
Saharan V, Kumaraswamy RV, Choudhary RC, Kumari, Pal A, Raliya P et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal Agricultural and Food Chemistry. 2016;64(31):6148-55. doi: https://doi.org/10.1021/acs.jafc.6b02239
Corradini E, de Moura MR, Mattoso LHC. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters. 2010;4(8):509-15. https://doi.org/10.3144/expresspolymlett.2010.64
Dzung NA, Khanh VTP, Dzung TT. Research on impact of chitosan oligomers on biophysical characteristics growth, development and drought resistance of coffe. Carbohydrate Polymers. 2011;84(2):751-55. doi: https://doi.org/10.1016/j.carbpol.2010.07.066
García-García DJ, Pérez -Sánchez GF, Hernández-Cocoletzi H, Sánchez-Arzubde MG, Luna-Guevara ML, Rubio-Rosas E, Krishnamoortthy R, Morán-Raya C. Chitosan coatings modified with nanostructured ZnO for the preservation of strawberries. Polymers (Basel). 2023 sep 15;15(18):3772. https://doi.org/10.3390/polym15183772
Pilon L, Spricio PC, Miranda M, Moura MR, Assis OBG, Mattoso LHC. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science and Technology. 2014;50(2):440-48. https://doi.org/10.1111/ijfs.12616
Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal Agricultural Research. 2016;14(1),e0902, eISSN:2171-9292. doi: http://dx.doi.org/10.5424/sjar/2016141-8205
Chookhongkha N, Sopondilok T, Photchanachai S. Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Horticulturae. 2013;973:231-37. doi: https://doi.org/10.17660/ActaHortic.2013.973.32
Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environ-mentally safer alternative for weed control. Journal of Hazardous Materials. 2014; 278, 163-71. https://doi.org/10.1016/j.jhazmat.2014.05.079
Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-Fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 1994;31(5):629-42. https://doi.org/10.1080/10601329409349743
Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsa P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimization of the preparative process and preliminary biological evaluation. Pharmaceutical Research. 2009;26(8):1918-30. https://doi.org/10.1007/s11095-009-9908-0
Kim LT, Wang SL, Hiep DM, Luoung PM, Vui NT, Dihn TM, Dzung NA. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates. 2014;40(6):2165-75. https://doi.org/10.1007/s11164-014-1594-9
Tavares IS, Caroni ALPF, Neto AD, Pereira MR, Fonseca JLC. Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids Surfaces B: Biointerfaces. 2012;90:254-58. https://doi.org/10.1016/j.colsurfb.2011.10.025
Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal Controlled Release. 2001;74(1-3):317-323. https://doi.org/10.1016/s0168-3659(01)00342-x
Agirre M, Zarate J, Ojeda E, Puras G, Desbrieres J, Pedraz JL. Low Molecular Weight Chitosan (LMWC)-based polyplexes for pDNA delivery: From bench to bedside. Polymers. 2014;6(6):1727-55. https://doi.org/10.3390/polym606172
Kashya PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. 2015;77:36-51. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039
Pham TT, Nguyen TH, Thi TV, Nguyen TT, Le TD, Hoang Vo DM, et al. Investigation of chitosan nanoparticles loaded with protocatechuic acid (PCA) for resistance of Pyricularia oryzae fungus against rice blast. Polymers. 2019;11(177):1-10. https://doi.org/10.3390/polym110177
Sathiyabama M, Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. International Journal of Biological Macromolecules. 2020,153:297-304. doi: https://dx.doi.org/10.1016/j.ijbiomac.2020.03.001
Siswanti S, Joko T, Subandiyah S. The role of nanochitosan on the expression of rice resistance genes against bacterial leaf blight. Journal Perlindungan Tanaman Indonesia, 2020, 24(2): 115–121 DOI: 10.22146/jpti.44418 Available online at http://jurnal.ugm.ac.id/jpti ISSN 1410-1637 (print), ISSN 2548-4788 (online)
Parthasarathy R, Jayabaskaran C, Manikandan A, Anusuya S. Synthesis of Nickel-Chitosan Nanoparticles for Controlling Blast Diseases in Asian Rice. Applied Biochemistry and Biotechnology. 2023, 195:2134-2148. https://doi.org/10.1007/s12010-022-04198-8
Panatda J, Duangdao C. Synthesized nanochitosan induced rice chitinase isoenzyme expression; application in brown planthopper (BPH) control. NU. International Journal of Science. 2015;12(1):25-37
Divya K, Vijayan S, Janardanan S, Jisha MS. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules. 2018. doi: https://dx.doi.org/10.1016/j.ijbiomac.2018.11.185
Divya K, Thampi M, Vijayan S, Shabanamol S, Jisha MS. Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity. Archives of Microbiology. 2021 Dec 29;204(1):95. https://doi.org/10.1007/s00203-021-02669-w . PMID: 34964906.
Soni AT, Rookes JE, Arya SS. Chitosan nanoparticles as seed priming agents to alleviate salinity stress in rice (Oryza sativa L.) seedlings. Polysaccharides. 2023; 4(2):129-141; https://doi.org/10.3390/polysaccharides4020010
Liang W, Yu A, Wang G, Zheng F, Hu P, Jia J et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydrate Polymers. 2018;199:437-44. doi: https://dx.doi.org/10.1016/j.carbpol.2018.07.042