Selection of drought tolerant accessions in tomato based on ion efflux test
Main Article Content
Abstract
Drought stress reduces the yield and production of tomato. The purpose of this study was to evaluate the tolerance to water stress in 22 genotypes of three tomato species and to identify tolerant accessions for use in breeding programmers. For this objective, the efflux of UV-absorbing substances was measured in leaf discs of 21-day-old tomato seedlings treated with PEG-6000 at 0 and 2 mPa. The results showed a differentiated response in the behavior of the accessions to water stress simulated with PEG-6000. The S. pimpinellifollium and S. lycopersicum variety cerasiforme genotypes showed lower phenols efflux under drought stress conditions. These genotypes can be used to increase tomato drought stress tolerance, and include in plant breeding programmers.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Bayomi KEM, Abdel-Baset A, Nasar SMA, Al-Kady AEMA. Performance of some tomato genotypes under greenhouse conditions. Egyptian Journal of Desert Research. 2020;70(1):1-10. https://doi.org/10.21608/EJDR.2019.16947.1041
Monge-Pérez JE, Loría-Coto M. Determinación de criterios de selección para el rendimiento de tomate (Solanum lycopersicum L.) cultivado bajo invernadero. AIA Avances en Investigación Agropecuaria. 2022;25(1):7-19.
Jiang X, Zhao Y, Tong L, Wang R, Zhao S. Quantitative analysis of tomato yield and comprehensive fruit quality in response to deficit irrigation at different growth stages. HortScience. 2019;54(8):1409-1417. https://doi.org/10.21273/HORTSCI14180-19
Sousaraei N, Mashayekhi K, Mousavizadeh SJ, Akbarpour V, Medina J, Aliniaeifard S. Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Horticulture, Environment, and Biotechnology. 2021;62:521-535. https://doi.org/10.1007/s13580-020-00328-5
Kumar V, Datir S, Khare T, Shriram V. Advances in biotechnological tools: Improving abiotic stress tolerance in rice. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK, editors. Advances in Rice Research for Abiotic Stress Tolerance. Sawston, CA, USA: Elsevier Inc. 2019; Chapter 30:615-632. https://doi.org/10.1016/B978-0-12-814332-2.00030-7
Toor MD, Adnan M, Javed MS, Habibah UE, Arshad A, Mughees M, Ahmad R. Foliar application of Zn: Best way to mitigate drought stress in plants; A review. International Journal of Applied Research. 2020;6(8):16-20.
Méndez-Vázquez JR, Benavides-Mendoza A, Juárez-Maldonado A, Cabrera-De la Fuente M, Robledo-Olivo A, González-Morales S. Efecto del riego deficitario en la acumulación de compuestos antioxidantes en plantas de tomate. Ecosistemas y Recursos Agropecuarios. 2021;8(2):e2822. https://doi.org/10.19136/era.a8n2.2822
Redmann RE, Haraldson J, Gusta LV. Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum. 1986;67:87-91. https://doi.org/10.1111/j.1399-3054.1986.tb01267.x
Hassanein A, Ibrahim E, Ali RA, Hashem H. Differential metabolic responses associated with drought tolerance in Egyptian rice. Journal of Applied Biology & Biotechnology. 2021;9(4):37-46. https://doi.org/10.7324/JABB.2021.9405
ElBasyoni I, Saadalla M, Baenziger S, Bockelman H, Morsy S. Cell membrane stability and association mapping for drought and heat tolerance in a worldwide wheat collection. Sustainability. 2017;9(9):1606-1621. https://doi.org/10.3390/su9091606
Swapna S, Shylaraj KS. Screening for osmotic stress responses in rice varieties under drought condition. Rice Science. 2017;24(5):253-263. https://doi.org/10.1016/j.rsci.2017.04.004
Nijabat A, Bolton A, Mahmood-ur-Rehman M, Shah AI, Hussain R, Naveed RH, Ali A, Simon P. Cell membrane stability and relative cell injury in response to heat stress during early and late seedling stages of diverse carrot (Daucus carota L.) germplasm. HortScience. 2020;55(9):1446-1452. https://doi.org/10.21273/HORTSCI15058-20
Pastelín-Solano MC, Castañeda-Castro O. Afectaciones fisiológicas y bioquímicas en vitroplantas de caña de azúcar en respuesta al estrés hídrico y salino. Revista Mexicana de Ciencias Agrícolas. 2018;9(7):1483-1493. https://doi.org/10.29312/remexca.v9i7.1253
Krishna R. Ansari WA, Soumia PS, Yadav A, Jaiswal DK, Kumar S, Singh AK, Singh M, Verma JP. Biotechnological interventions in tomato (Solanum lycopersicum) for drought stress tolerance: Achievements and future prospects. BioTech. 2022;11(4):48. https://doi.org/10.3390/biotech11040048
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological advances to improve abiotic stress tolerance in crops. International Journal of Molecular Science. 2022;23(19):12053. https://doi.org/10.3390/ijms231912053