Selection of drought tolerant accessions in tomato based on ion efflux test

Main Article Content

Yanelis Camejo Serrano
Claudia Cecilia Ruiz Domínguez
Yaniel Castro Reyes
René Florido Bacallao
Marta A. Álvarez Gil
Marilyn Florido Bacallao

Abstract

Drought stress reduces the yield and production of tomato. The purpose of this study was to evaluate the tolerance to water stress in 22 genotypes of three tomato species and to identify tolerant accessions for use in breeding programmers. For this objective, the efflux of UV-absorbing substances was measured in leaf discs of 21-day-old tomato seedlings treated with PEG-6000 at 0 and 2 mPa. The results showed a differentiated response in the behavior of the accessions to water stress simulated with PEG-6000. The S. pimpinellifollium and S. lycopersicum variety cerasiforme genotypes showed lower phenols efflux under drought stress conditions. These genotypes can be used to increase tomato drought stress tolerance, and include in plant breeding programmers.

Article Details

How to Cite
Camejo Serrano, Y., Ruiz Domínguez, C. C., Castro Reyes, Y., Florido Bacallao, R., Álvarez Gil, M. A., & Florido Bacallao, M. (2025). Selection of drought tolerant accessions in tomato based on ion efflux test. Cultivos Tropicales, 46(3), https://cu-id.com/2050/v46n3e08. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1879
Section
Short Communication

References

Bayomi KEM, Abdel-Baset A, Nasar SMA, Al-Kady AEMA. Performance of some tomato genotypes under greenhouse conditions. Egyptian Journal of Desert Research. 2020;70(1):1-10. https://doi.org/10.21608/EJDR.2019.16947.1041

Monge-Pérez JE, Loría-Coto M. Determinación de criterios de selección para el rendimiento de tomate (Solanum lycopersicum L.) cultivado bajo invernadero. AIA Avances en Investigación Agropecuaria. 2022;25(1):7-19.

Jiang X, Zhao Y, Tong L, Wang R, Zhao S. Quantitative analysis of tomato yield and comprehensive fruit quality in response to deficit irrigation at different growth stages. HortScience. 2019;54(8):1409-1417. https://doi.org/10.21273/HORTSCI14180-19

Sousaraei N, Mashayekhi K, Mousavizadeh SJ, Akbarpour V, Medina J, Aliniaeifard S. Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Horticulture, Environment, and Biotechnology. 2021;62:521-535. https://doi.org/10.1007/s13580-020-00328-5

Kumar V, Datir S, Khare T, Shriram V. Advances in biotechnological tools: Improving abiotic stress tolerance in rice. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK, editors. Advances in Rice Research for Abiotic Stress Tolerance. Sawston, CA, USA: Elsevier Inc. 2019; Chapter 30:615-632. https://doi.org/10.1016/B978-0-12-814332-2.00030-7

Toor MD, Adnan M, Javed MS, Habibah UE, Arshad A, Mughees M, Ahmad R. Foliar application of Zn: Best way to mitigate drought stress in plants; A review. International Journal of Applied Research. 2020;6(8):16-20.

Méndez-Vázquez JR, Benavides-Mendoza A, Juárez-Maldonado A, Cabrera-De la Fuente M, Robledo-Olivo A, González-Morales S. Efecto del riego deficitario en la acumulación de compuestos antioxidantes en plantas de tomate. Ecosistemas y Recursos Agropecuarios. 2021;8(2):e2822. https://doi.org/10.19136/era.a8n2.2822

Redmann RE, Haraldson J, Gusta LV. Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum. 1986;67:87-91. https://doi.org/10.1111/j.1399-3054.1986.tb01267.x

Hassanein A, Ibrahim E, Ali RA, Hashem H. Differential metabolic responses associated with drought tolerance in Egyptian rice. Journal of Applied Biology & Biotechnology. 2021;9(4):37-46. https://doi.org/10.7324/JABB.2021.9405

ElBasyoni I, Saadalla M, Baenziger S, Bockelman H, Morsy S. Cell membrane stability and association mapping for drought and heat tolerance in a worldwide wheat collection. Sustainability. 2017;9(9):1606-1621. https://doi.org/10.3390/su9091606

Swapna S, Shylaraj KS. Screening for osmotic stress responses in rice varieties under drought condition. Rice Science. 2017;24(5):253-263. https://doi.org/10.1016/j.rsci.2017.04.004

Nijabat A, Bolton A, Mahmood-ur-Rehman M, Shah AI, Hussain R, Naveed RH, Ali A, Simon P. Cell membrane stability and relative cell injury in response to heat stress during early and late seedling stages of diverse carrot (Daucus carota L.) germplasm. HortScience. 2020;55(9):1446-1452. https://doi.org/10.21273/HORTSCI15058-20

Pastelín-Solano MC, Castañeda-Castro O. Afectaciones fisiológicas y bioquímicas en vitroplantas de caña de azúcar en respuesta al estrés hídrico y salino. Revista Mexicana de Ciencias Agrícolas. 2018;9(7):1483-1493. https://doi.org/10.29312/remexca.v9i7.1253

Krishna R. Ansari WA, Soumia PS, Yadav A, Jaiswal DK, Kumar S, Singh AK, Singh M, Verma JP. Biotechnological interventions in tomato (Solanum lycopersicum) for drought stress tolerance: Achievements and future prospects. BioTech. 2022;11(4):48. https://doi.org/10.3390/biotech11040048

Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological advances to improve abiotic stress tolerance in crops. International Journal of Molecular Science. 2022;23(19):12053. https://doi.org/10.3390/ijms231912053