Incidencia de las nanopartículas de calcio y magnesio sobre la productividad del limón Eureka

Contenido principal del artículo

María de las Mercedes Yfran Elvira
Marco D Chabbal Monzón
Analía B Píccoli Delbón
Laura I Giménez

Resumen

El calcio y magnesio son elementos esenciales en la nutrición vegetal y actualmente en el mercado existen fertilizantes constituidos por nanopartículas de Dolomita, que permiten incorporarlos al suelo o vía foliar. El objetivo de este trabajo fue evaluar la incidencia de la nanofertilización de calcio/magnesio sobre la productividad, nutrición foliar y calidad de fruta del limón Eureka. Se evaluaron los siguientes cinco tratamientos: 1- Testigo; 2- nanopartículas Ca (9,8 %)-Mg (5,9 %) 2 L ha-1 [vía foliar]; 3- nanopartículas Ca (9,8 %)-Mg (5,9 %) 4 L ha-1 [vía foliar]; 4- nanopartículas Ca (9,8 %)-Mg (5,9 %) 2 L ha-1 [aplicado al suelo]; 5- nanopartículas Ca (9,8 %)-Mg (5,9 %) 4 L ha-1 [aplicado al suelo], distribuidos en un diseño de bloques completos al azar con cuatro repeticiones y cuatro plantas por repetición. Se tomaron muestras foliares en marzo, en dos campañas consecutivas, determinándose concentraciones de nitrógeno, fósforo, potasio, calcio, magnesio. A la cosecha se seleccionaron 40 frutos por parcela experimental, evaluándose diámetro ecuatorial, porcentaje de jugo, producción en kilogramos por planta, contenido de sólidos solubles totales, acidez titulable e índice de madurez. La nanofertilización de calcio/magnesio aplicado vía foliar 2 L ha-1 y aplicado al suelo 4 L ha-1 presentó asociación con la concentración de magnesio foliar, favoreciendo una acumulación de este nutriente en el tiempo. El tratamiento con nanofertilizante de calcio/magnesio en dosis de 4 L ha-1 aplicado al suelo fue significativo en el porcentaje de jugo del fruto de plantas de limón ʹEurekaʹ.

Detalles del artículo

Cómo citar
Yfran Elvira, M. de las M., Chabbal Monzón, M. D., Píccoli Delbón, A. B., & I Giménez , L. (2024). Incidencia de las nanopartículas de calcio y magnesio sobre la productividad del limón Eureka. Cultivos Tropicales, 45(3), https://cu-id.com/2050/v45n3e05. Recuperado a partir de https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1788
Sección
Artículo Original

Citas

Agustin Fonfria M. Citricultura [Internet]. 2da ed. Madrid, España: Mundi Prensa; 2010 [citado 13 de mayo de 2024]. 422 p. Disponible en: https://www.margenlibros.com/libro/citricultura-2-ed-_241238

Song WP, Chen W, Yi JW, Wang HC, Huang XM. Ca Distribution Pattern in Litchi Fruit and Pedicel and Impact of Ca Channel Inhibitor, La3+. Front Plant Sci [Internet]. 9 de enero de 2018 [citado 13 de mayo de 2024];8:2228. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767242/

Bonomelli C, Fernández V, Martiz J, Videla X, Arias MI, Rojas-Silva X, et al. Absorption and distribution of root, fruit, and foliar-applied 45 Ca in «Clemenules» mandarin trees. J Sci Food Agric [Internet]. Septiembre de 2020;100(12):4643-50. Available in: https://pubmed.ncbi.nlm.nih.gov/32399984/

Rincón Pérez A, Martínez Quintero E. Funciones del calcio en la calidad pos-cosecha de frutas y hortalizas: una revisión. Alimentos hoy [Internet]. 2015;23(34):13-25. Available in: https://alimentoshoy.acta.org.co/index.php/hoy/article/view/301

Lira Saldivar RH, Méndez Argüello B, Santos Villarreal GD los, Vera Reyes I, Lira Saldivar RH, Méndez Argüello B, et al. Potencial de la nanotecnología en la agricultura. Acta Univ [Internet]. Abril de 2018 [citado 13 de mayo de 2024];28(2):9-24. Available in: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0188-62662018000200009&lng=es&nrm=iso&tlng=es

Zambon AA, Cordoba M, Lombardi OI. ¿Nanomateriales o nanopartículas? Desafíos de la ontología del dominio nano. 15 de febrero de 2019 [citado 13 de mayo de 2024]; Available in: https://ri.conicet.gov.ar/handle/11336/121838

Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, et al. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res Int [Internet]. Abril de 2019;26(11):11288-99. Available in: https://pubmed.ncbi.nlm.nih.gov/30793248/

Asl KR, Hosseini B, Sharafi A, Palazon J. Influence of nano‐zinc oxide on tropane alkaloid production, h6h gene transcription and antioxidant enzyme activity in Hyoscyamus reticulatus L. hairy roots. Eng Life Sci [Internet]. 12 de noviembre de 2018 [citado 13 de mayo de 2024];19(1):73-89. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999414/

Taherian M, Bostani A, Omidi H. Boron and pigment content in alfalfa affected by nano fertilization under calcareous conditions. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS [Internet]. mayo de 2019;53:136-43. Available in: https://pubmed.ncbi.nlm.nih.gov/30910197/

García-Gallegos E, Vázquez O, Chávez-Gómez A, Acosta E, López-López A. Relación entre parámetros edáficos y criterios de calidad postcosecha de frutos de Prunus persica (L.) Batsch por análisis multivariado. Sci Agropecu [Internet]. 30 de noviembre de 2020;11:565-73. Available in: https://www.researchgate.net/publication/346474352_Relacion_entre_parametros_edaficos_y_criterios_de_calidad_postcosecha_de_frutos_de_Prunus_persica_L_Batsch_por_analisis_multivariado_Relationship_between_edaphic_parameters_and_postharvest_quality_cri

Fan Z, Xiong H, Luo Y, Wang Y, Zhao H, Li W, et al. Fruit Yields Depend on Biomass and Nutrient Accumulations in New Shoots of Citrus Trees. Agronomy [Internet]. 17 de diciembre de 2020;10:1988. Available in: https://www.researchgate.net/publication/347682005_Fruit_Yields_Depend_on_Biomass_and_Nutrient_Accumulations_in_New_Shoots_of_Citrus_Trees

Zhou Y, He W, Zheng W, Tan Q, Xie Z, Zheng C, et al. Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars. Food Chem [Internet]. 1 de septiembre de 2018;259:278-85. Available in: https://pubmed.ncbi.nlm.nih.gov/29680055/

Díaz Acosta EM. Nanopartículas de plata: síntesis y funcionalización. Una breve revisión. Mundo Nano Rev Interdiscip En Nanociencias Nanotecnología [Internet]. junio de 2019 [citado 13 de mayo de 2024];12(22):0-0. Available in: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2448-56912019000100006&lng=es&nrm=iso&tlng=es

Rosa ED la, Ramírez G, Panikar S, Camacho T, Salas P, López-Luke T, et al. Algunas aplicaciones de la nanofotónica en la biomedicina. Mundo Nano Rev Interdiscip En Nanociencias Nanotecnología [Internet]. Junio de 2020 [citado 13 de mayo de 2024];13(24). Available inonible en: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2448-56912020000100101&lng=es&nrm=iso&tlng=es

Bellacomo C, Berriolo MJ, Caracotche M, Castagnino A, Cendón M, Diaz K, et al. Panorama of intensive plant production of healthy foods - «Proalim Km 0», in times of pandemic by Covid-19 -Part 2 Preferences of the production, agribusiness, commercialization and consumption of diversity of vegetables. Hortic Argent 39 [Internet]. 21 de diciembre de 2020; Available in: https://www.researchgate.net/publication/357635179_Panorama_of_intensive_plant_production_of_healthy_foods_-_Proalim_Km_0_in_times_of_pandemic_by_Covid-19_-Part_2_Preferences_of_the_production_agribusiness_commercialization_and_consumption_of_diversit

Monreal CM, De Rosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils [Internet]. 1 de abril de 2016 [citado 13 de mayo de 2024];52(3):423-37. Available in: https://doi.org/10.1007/s00374-015-1073-5

Ramos-Ulate CM, Pérez-Álvarez S, Guerrero-Morales S, Palacios-Monarrez A. Biofertilización y nanotecnología en la alfalfa (Medicago sativa L.) como alternativas para un cultivo sustentable. Cultivos Tropicales [Internet]. 23 de junio de 2021 [citado 13 de mayo de 2024];42(2):e10-e10. Available in: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1594

Valdez-López LL, Duque-Mariño MM, Jiménez-Jiménez WJ. La Nanoquímica, una disciplina en continuo progreso. Polo Conoc [Internet]. 1 de octubre de 2020 [citado 13 de mayo de 2024];5(10):215-26. Available in: https://polodelconocimiento.com/ojs/index.php/es/article/view/1800

El-Sharkawy M, Elbashbeshe T, Rezk E, El-Kader NK, Al-Shal R, Missaoui A. Response of Alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci [Internet]. 1 de enero de 2017;08:1751-73. Available in: https://www.researchgate.net/publication/318073922_Response_of_Alfalfa_under_Salt_Stress_to_the_Application_of_Potassium_Sulfate_Nanoparticles

Hua KH, Wang HC, Chung RS, Hsu JC. Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J Pestic Sci [Internet]. 1 de diciembre de 2015;40:1-6. Available in: https://www.researchgate.net/publication/287912225_Calcium_carbonate_nanoparticles_can_enhance_plant_nutrition_and_insect_pest_tolerance

Kalra Y. Handbook of Reference Methods for Plant Analysis [Internet]. CRC Press; 1997. 326 p. Available in: https://books.google.co.ve/books?id=wLggXPmhY18C&printsec=frontcover&hl=es#v=onepage&q&f=false

Infostat - Software estadístico [Internet]. [citado 13 de mayo de 2024]. Available in: https://www.infostat.com.ar/

Song W, Yi J, Kurniadinata OF, Wang H, Huang X. Linking Fruit Ca Uptake Capacity to Fruit Growth and Pedicel Anatomy, a Cross-Species Study. Front Plant Sci [Internet]. 2018;9:575. Available in: https://pubmed.ncbi.nlm.nih.gov/29868049/

Legaz F. Análisis de hojas, suelos y aguas para el diagnóstico nutricional de plantaciones de cítricos: procedimiento de toma de muestras [Internet]. Consellería d’Agricultura, Pesca i Alimentació; 1995. 27 p. Available in: https://books.google.com.cu/books/about/An%C3%A1lisis_de_hojas_suelos_y_aguas_para_e.html?id=6-aBXwAACAAJ&redir_esc=y

Artículos más leídos del mismo autor/a