El cultivo de tejidos y la transformación genética en Gossypium spp
Contenido principal del artículo
Resumen
La planta de algodón se cultiva principalmente por la fibra, el aceite que se extrae de la semilla que puede utilizarse como aceite comestible y el aprovechamiento de la torta de algodón como forraje. Esta planta es resistente a condiciones de sequía y salinidad del suelo. Sin embargo, posee algunos caracteres que limitan su productividad. Es por ello que requiere de programas de mejoramiento genético, pero los programas por métodos tradicionales están limitados por varios factores en este cultivo, por lo que las técnicas biotecnológicas constituyen alternativas para lograr los objetivos de la mejora. En el trabajo se realizó una breve revisión de la literatura científica nacional e internacional sobre el origen, la distribución e importancia del cultivo, así como los antecedentes de la regeneración de plantas y los métodos de mejoramiento, mediante la transformación genética, en el cultivo del algodón. Se pone a disposición del lector un compendio de resultados como preámbulo para el desarrollo de futuras investigaciones en la regeneración de plantas y mejora genética de Gossypium spp. por métodos biotecnológicos.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
National Cooperative Dairy Federation of India Ltd. (NCDFI), Cottonseed Oil Cake. 2020; 15-21p.
SAGARPA. Análisis de la cadena de valor en la producción de algodón en México , Secretaría de Agricultura, Desarrollo Rural, Pesca y Alimentación, Organización de las Naciones Unidas para la Alimentación y la Agricultura, Ciudad de México, 2014, 71 p.
Teruya MS. Evaluación de fitorreguladores del crecimiento en la inducción de callo embriogénico en Gossypium barbadense L. 1753 “algodón nativo” color pardo. Tesis para optar el Título Profesional de Licenciada en Biología. Facultad de Ciencias Biológicas, Escuela Profesional De Biología, Universidad Ricardo PALMA, Lima, Perú. 201; 69 p.
Martínez SJ, Rafael Gómez- Kosky R, Saucedo O. El sorgo: su cultivo y mejora en Cuba. Editorial Académica Española. 2014; 100 p. ISBN: 978-3-8473-6942-4.
Martínez SJ. Regeneración de plantas de sorgo granífero [Sorghum bicolor (L.) Moench] cultivar ‘CIAP 132R-05’ vía embriogénesis somática. Tesis presentada en opción al grado científico de Doctor en Ciencias Agrícolas. Universidad Central “Marta Abreu” de Las Villas. 2018; 101 p.
Conabio. (2005). Sistema de Información de Organismos Vivos Modificados.
Recuperado el 10 de Abril de 2011, de Bioseguridad.
Roskov Y, Abucay L, Orrell T, Nicolson D, Flann C, Bailly N, Kirk P, Bourgoin T, DeWalt RE, Decock W, De Wever A, eds. Species 2000 & ITIS Catalogue of Life, 2016; Annual Checklist. Available from: www
Pérez M. Documento base de la especie Gossypium hirsutum L. para el análisis de riesgo ambiental. Distrito Federal, México: Instituto Nacional de Ecología. 2012.
FAO. Día Mundial del Algodón 2021 – Conmemoración Latinoamérica y África. 2021. Consultado.6 de junio del 2022 en: https://www.fao.org/in-action/program-brazil-fao/news/ver/fr/c/1441913/
FAO. Producción mundial de algodón. 2021. Consultado.6 de junio del 2022 en: https://www.icac.org/Publications/Details?publicationId=81
Naz S, Ali A, Siddique FA and Iqbal J. Multiple shoot formation from different explants of chick pea (Cicer arietinum L.), Pak. J. Bot. 2007; 39(6): 2067-2073 p.
Zapata C, Srivatanakul M, Park SH, Lee BM, Salas MG, and. Smith R.H. Improvements in shoot apex regeneration of two fiber crops: cotton and kenaf, Plant Cell Tissue Org. Cult. 1999; (12):43-50.
Firoozabady E, DeBoer D.L. Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirstum L.). In vitro Cell. Dev. Biol. Plant. 1993; 9:166-173.
Thorpe, TA. Morphogenesis and regeneration in tissue culture. In: Genetic Engineering. Application to agriculture. Beltsville Symposia in Agricultural Research (L.D. Owens, ed.).1983; 285-303 p. Rowman and Allanheld, Publishers
Segura J. Morfogénesis in vitro. En: Fisiología y Bioquímica Vegetal (J. Azcón-Bieto, M. Talón, eds) .1993; 381-392 p. Interamericana-McGraw Hill, Madrid.
Olhoft PM, Somers DA. Soybean. En: EC Pua, MR Davey (Eds.) Biotechnology in Agriculture and Forestry. 2007; 61. Transgenic Crops VI. Springer-Verlag, Berlin Heidelberg.
Gonzalez AJ. Evaluación in vitro de materiales de algodón Gossypium hirsutum L. en relación a la capacidad de regeneración y respuesta a estrés abiótico. Análisis de variedades comerciales de INTA, líneas avanzadas. Tesis para obtener el grado de Magister en Genética Vegetal, presentada en la Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 2015; 193 p.
Radice S. Morfogénesis. En: Levitus G, Echenique V, Rubinstein C, Hopp E, Mroginski L, eds. Biotecnología y Mejoramiento Vegetal II. Buenos Aires: INTA; 2010; 26–33 p.
Bedoya C, Ríos A. Inducción de la embriogénesis somática en Crinum x powellii “album” (Amaryllidaceae) [Tesis de pregrado]. Pereira: Universidad Tecnológica de Pereira; 2010.
George EF, Hall MA, De Klerk GJ. Plant propagation by tissue culture. 3rd ed. Vol. 1. Dordrecht: Springer; 2008.
Kamle M, Bajpai A, Chandra R, Kalim S, Kumar R. Somatic embryogenesis for crop improvement. GERF Bull Biosci. 2011; 2(1):54–59 p.
Price HJ and Smith RH. Somatic embryogenesis in suspension cultures of Gossypium klotzschiaanum Anderss. Planta. 979; 145: 305-307.
Davidonis GH and Hamilton RH. Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci. Lett. 1983; 32: 89-93.
Méndez-Natera JR, Rondón A, Hernández J, Merazo-Pinto JF. Genetic studies in upland cotton (Gossypium hirsutum L.) I. heterotic effects, Pak. J. Bot. 2007; 39(2): 385-395
Chitra Devi B, Narmathabai V. Somatic embryogenesis in the medicinal legume Desmodium motorium (Houtt.) Merr. Plant Cell Tiss. Organ Cult., 2011;106: 409-418.
Quiroz FR, Rojas R, Galaz RM, Loyola VM. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss. Organ Cult. 2006; 86: 285-301.
Bian FH, Qu FN, Zheng CX, You CR, Gong XQ. Recent advances in Cyclamen persicum Mill. Somatic embryogenesis. Northern Horticult. 2007; 8:70-72.
Rodríguez Beraud MM, Latsague MI, Chacón MA, Astorga PK. Bosque, 2014; 35(1): 111-118. DOI: 10.4067/S0717-92002014000100011
Rojas C, Cuzquén C, Delgado GE. In vitro clonal propagation and cutting rooting of native cotton (Gossypium barbadense L.). Acta Agron. 2013; 62(4): 312-320. ISSN 0120-2812
Petrone S. Variación funcional relacionada con la tolerancia al estrés salino de Gossypium hirsutum en México. Tesis que para obtener el título de Bióloga. Universidad Nacional
Autónoma de México. 2015, 103 p.
Dunstan DI, Tautorus TE, Thorpe TA. Somatic embryogenesis in woody plants. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht. 1995; 471-538.
Wu JY, She JM, Cai XN, Bajaj YPS. Establishment of callus culture, somatic embryogenesis, and the regeneration of cotton plants. In: Bajaj YPS. (ed.) Cotton. Biotechnology in agriculture and forestry, Vol. 42. Berlin: Springer. 1998; 37-47.
Nedd LL, González ME, Martínez SJ. Efecto del 2,4-d y ácido ascórbico en la formación de callos embriogénicos en Gossypium barbadenseL. cultivar ‘MSI’. Biotecnología Vegetal, 2022:
Hossein A, Aydin M, Haliloglu K. Plant regeneration system in recalcitrantrye (Secale cereale L.)Arash Hossein Pour, Murat Aydin &Kamil Haliloglu. Biologia. 2019, 75(7):1017-1028 DOI 10.2478/s11756-019-00395-
Maura Isabel Díaz MI, Rodas JM, Luis Roberto González LR, Vera M. Establecimiento in vitro de segmentos nodales de Handroanthus heptaphyllus de flores blancas. Biotecnología Vegetal. 2020; 20(3): 203 – 210. SSN 2074-8647, RNPS: 2154
Devasigaman L, Devarajan R, Loganathan R, Rafath H, Padman M, Govinda MV, Giridhar L, Chetan HC . Devasigamani N. Lavandula angustifolia L. plants regeneration from in vitro leaf explants-derived callus as conservation strategy. Biotecnología Vegetal. 2020; 20(2): 75 – 82. ISSN 2074-8647, RNPS: 2154
Azofeifa A. Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agronomía Mesoamericana. 2009; 20(1): 153-175. issn: 1021-7444
Mora ME, Peralta J, López HA, García R, González JG. Efecto del ácido ascórbico sobre crecimiento, pigmentos fotosintéticos y actividad peroxidasa en plantas de crisantemo Revista Chapingo Serie Horticultura. 2011; XVII (2): 73-81.
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962; 15:473–497.
Sharry S, Adema A, Abedini W. Plantas de probeta: Manual para la propagación de plantas por cultivo de tejidos in vitro. Editorial de la Universidad de La Plata, Argentina. 2015; 234 p. ISBN 978-950-34-1254-1
Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha A. Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). J Zhejiang Univ-SCI B. 2006; 7(4):291–298.
Rajeswari S, Muthuramu S, Chandirakala R, Thiruvengadam V, Raveendran T. Callus induction, somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Electronic Journal of Plant Breeding. 2010;1(4):1186–1190
Han G, Wang X, Zhang G, Ma Z. Somatic embryogenesis and plant regeneration of recalcitrant cottons (Gossypium hirsutum). Afr J Biotechnol. 2009; 8(3):432– 437.
von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell Tiss Organ Cult. 2002; 69: 233-249.
Yumbla M, Ferreira AC, Marques MV, Rocha DI, Silva D, Dias A, Barbosa LG, Campos Otoni W. Somatic embryogenesis and de novo shoot organogenesis can be alternatively induced by reactivating pericycle cells in Lisianthus (Eustoma grandiflorum (Raf.) Shinners) root explants. Available from: In Vitro Cell Dev Biol – Plant. 2017, 50:738–745. DOI 10.1007/s11627-017-9800-2
Khan T, Singh AK, Pant R. Regeneration via somatic embryogenesis and organogenesis in different cultivars of cotton (Gossypium spp.). In Vitro Cell DevBiol-Plant. 2006; 42:498–501.
Zouzou M, Kouakou TH, Koné M, Georges AN, Justin KY. Effect of genotype, explants, growth regulators and sugars on callus induction in cotton (Gossypium hirsutum L.). Aust J Crop Sci. 2008; 2(1):1–9
Sun Y, Zhang X, Jin S, Liang S, Nie Y. Somatic embryogenesis and plant regeneration in wild cotton (Gossypium klotzschianum). Plant Cell Tiss Org. 2003; 75:247–253.
Han G, Wang X, Zhang G, Ma Z. Somatic embryogenesis and plant regeneration of recalcitrant cottons (Gossypium hirsutum). Afr J Biotechnol. 2009; 8(3):432– 437.
Sakhanokho HF, Zipf A, Rajasekaran K, Saha S, Sharma GC. Induction of highly embryogenic calli and plant regeneration in Upland (Gossypium hirsutum L.) and Pima (Gossypium barbadense L.) cottons. Crop Sci. 2001; 41:1235–1240.
Abdellatef E, Khalafallah M. Influence of growth regulators on callus induction from hypocotyls of medium staple cotton (Gossypium hirsutum L.) Cultivar barac B-67. J. Soil Nature. 2008; 2(1):17–22.
Hirimburegama K, Ga~mage N. In vitro callus and cell cultures of Gossypium hirsutum L. (cotton). J Natn Sci Coun Sri Lanka. 1994; 22(4):305–312.
González-Benito M, Carvalho J, Pérez C. Somatic embryogenesis of an early cotton cultivar. Pesq agropec bras. 1997; 32(5):485–488
Zhang B-H, Feng R, Liu F, Wang Q. High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot Bull Acad Sin. 2001; 42:9–16.
Ghaemi M, Majd A, Fallahian F, Bezdi G. Comparison of callus induction and somatic embryogenesis of some Iranian cottons (Gossypium Spp.) with Coker 312 and histology of somatic embryogenesis. African Journal of Biotechnology. 2013; 10(15):2915–2922.
Surgun Y, Yilmaz E, Çöl B, Bürün B. Callus induction, In vitro shoot development and somaclonal variations in cotton (Gossypium hirsutum L.). J Appl Biol Sci. 2014; 8(2):62–68.
Sanghera GS, Gill MS, Sandhu JS, Gosal SS. Effects of genotype, plant growth regulators and explant source on callus induction in cotton (Gossypium hirsutum L.). Asian Australas J Plant Sci Biotechnol. 2009; 3:37–42.
Efe L. Callus formation and plant regeneration from two cotton species (Gossypium hirsutum L. and G. barbadense L.). Pak J Bot. 2005; 37(2):227–236.
Martínez P, Cabrera JL, Herrera L. Las plantas transgénicas: una visión integral. Genosis [online]. 2004, 2:28 p.
Rao AQ, Ali MA, Khan MAU, Bajwa KS, Iqbal A, Iqbal T, Shahid AA, Nasir IA and Husnain T. Science Behind Cotton Transformation. Chapter from the book Cotton Research, Editado por: INTECH, 2016; 209-229. Downloaded from: http://www.intechopen.com/books/cotton-resear
Smith EF, Townsend CO. A plant-tumor of bacterial origin. Science 25, 671–673.doi:10.1126/science. 1907; 25:643.671.
Binns A, Campbell A. Agrobacterium tumefaciens-mediated transformation of plant cells. Encyclopedia of Life Sciences. Nature Pub. Group. 2001; 1-6.
Chilton MD. Agrobacterium. A memoir. Plant Physiol. 2001; 125: 9-14.
Crouzet P, Hohn B. Transgenic plants. Encyclopedia of Life Sciences. Nature Publishing Group. 2002, 1
Hamilton CM, Frary A, Lewis C, Tanksley SD. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA. 1996, 93: 997-9979.
Trieu AT, Burleigh SH. Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 2000; 22: 531-541
Umbeck P, Barton KA, Norheim EV, McCarty JC, Parrot WL, Jennings JC. Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J Econ Entomol. 1991; 84: 1943-1950.
Trolider NL, Berlin JD, Goodin JR. 2,4-D resistant transgenic cotton. Proceedings Beltwide Production Research Conference. National Cotton, Council, Mephis, Tennesse, 1988; 840 p.
de Framond AJ, Barton KA, Chilton MD. Mini-Ti: a new vector strategy for plant genetic engineering. Biotechnology (N Y). 1983; 5 262–269
Finer JF, Vain P, Jones MW, McMullen MA. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reports. 1993; 11:323–328
Firoozababy E, Deboer DL, Merlod DJ, Halh EL, Rahska KL, Murray EE. Transformation of Gossypium hirsotun L. by Agrobacterium tumefaciens and regeneratión of trangenic plants. Plant Molecular Biology. 1987, 10 : 105-116
Cousins YL, Lyon BR and Llewellyn DJ. Transformation of an Australian cotton cultivar: Prospects for cotton through genetic engineering. Australian Journal of Plant Physiology. 1991, 18: 481-494.
Rajasekaran K, Grula, JW, Hudspeth, RL, Pofelis S, Anderson DM. Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Molecular Breeding. 1996, 2: 307–319
Wendt-Gallitelli MF, Dobrigkeit I. Investigations implying the invalidity of octopine as a marker for transformation by Agrobacterium tumefaciens. Z. Naturforschg. 1973; 28,768–771.
Cousins YL, Lyon BR and Llewellyn DJ. Transformation of an Australian cotton cultivar: Prospects for cotton through genetic engineering. Australian Journal of Plant Physiology. 1991; 18: 481-494.
Keller K, Melillo J, de mello W. “Trace Gas E missions from Ecosystems of the Amazon Basin”. En: Ciencia e Cultura. Journal of the Brazilian Association for the Advancement of Science. 1997, 49(01):87-97.
Nadolska-Orczyk A, Orczyk W, Przetakiewicz A. Agrobacterium-mediated transformation of cereals—from technique development to its application. Acta Physiologiae Plantarum. 2000; 22:77-88. DOI: 10.1007/s11738-000-0011-8
Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Reports. 1995; 14:758-762. DOI: 10.1007/BF00232917.
Dickens JC. Green Leaf Volatiles Enhance Aggregation Pheromone of Boll Weevil, Anthonomus grandis. Entomol. Exp. Appl., 1989; 52(3), 191-203.
Moffat AS. Transposons Help Sculpt a Dynamic Genome. Science, 2000; 289(5484), 1455-1457.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A Putativerna-interference-based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic rnai, and
Hypothetical Mechanisms of Action. Biol. Direct, 2006; 1, 7.
Díaz C, Chaparro A. Métodos de transforMación Genética de plantas. Revista U.D.C.A Actualidad & Divulgación Científica. 2004, 15 (1): 49 – 61
Fundación Antama. El algodón transgénico ocupa alrededor del 70% de la superficie algodonera mundial. 2021. Consultado en: https://twitter.com/fundacionantama/status/1429461923867893762
FAO, Día mundial del algodón 2021. Consultado en: https://docs.wto.org/dol2fe/Pages/SS/directdoc.aspx?filename=q:/WT/CFMC/W93-03.pdf&Open=True.
Agrogebio. Los cultivos transgénicos en el mundo. 2019. Consultado en: https://www.argenbio.org/cultivos-transgenicos/12549
FAO. Perspectivas Agrícolas 2013-2022. 2013. Consultado en: http://www.oeidrus-bc.gob.mx/sispro/algodonbc/PRODUCCION/Mundial/Situacion%20Actual%20del%20mercado%20Internacional%20de%20Algodon.pdf
Shukla V, Devi P, Baghel S. Isolation, characterization and biomass production of Trichoderma spp. A review. Research in Environment and Life Sciences. 2016; 9(7): 889-894
Veluthambi K, Krishnan M, Gould JH, Smith RH, Gelvin SB. Opines stimulate induction of the vir-genes of the Agrobacterium tumefaciens Ti plasmid. J Bateriol. 1989; 171(7):3696-3703.
Rugini E, Mariotti D. Agrobacterium Rhizogenes T-DNA genes and rooting in woody species. Acta Horticulturae. 1999; 300: 301-308.
Sanford JC. The biolistic process. Trends Biotechnol. 1988, 6: 299-302.
Hansen G, Wright MS. Recent advances in the transformation of plants. Trends Plant Sci. 1999; 4: 226-231
Kohli A, Leech M, Vain P, Laurie DA, Christou P. Transgene organization in rice engineered through direct DNA transfer supports a two fase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad.
Sci. USA. 1998; 95: 7203-7208.
Gutiérrez A, Santacruz F, Cabrera JL, Rodríguez B. Mejoramiento genético vegetal in vitro. e-Gnosis, [online]. 2003; 1: 4. www.e-gnosis.udg.mx/vol1/art4
Reddy, MS, Dinkins RD, Collins GB. Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Report. 2003; 21: 676-683.
McCabe DE, Martinell BJ. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology. 1993; 11:596-598.
Maskin L, Turica M, Nakaya P, González A, Lewi DM. Técnicas aplicadas en la transgénesis en algodón (Gossipyum hirsutum L.). Trabajo presentado en el 1º Congreso Internacional de Algodón realizado el 27/10 en Presidencia Roque Sáenz Peña, Chaco. Argentina. 2018.