Characteristics of the Red Leached Fersialitic soils of the high southern plain of Pinar del Río

Main Article Content

Greter Carnero-Lazo
Alberto Hernández-Jiménez
Andy Bernal-Fundora
Elein Terry-Alfonso

Abstract

Soil fertility is considered a determining factor in the availability of nutrients for plants, mainly in tropical regions where transformation and translocation processes of substances are more energetic in soil formation compared to temperate regions. This problem is related to the climatic factor, mainly rainfall and temperature, which are more accentuated in these areas. Considering the above, a detailed edaphological study of "El Pitirre" Productive Base Unit, in Pinar del Río province, was carried out through the application of the Dokuchaevian comparative geographic method, with the main objective of evaluating the edaphological properties. For this, different factors of soil formation are diagnosed, which with their morphological, physical and chemical properties, the soil formation process is established; which is the main basis for soil classification in Cuba. On these results, a new genetic type of soils was diagnosed, the Red Leached Fersialitic, with several subtypes according to relief differences and anthropic causes. In addition, it was shown that the soils are of the ABtC profile type, deep, red, clayey, formed from ancient Quaternary sediments rich in basalt, in undulating to hilly relief, with acid reaction pH and have a low to very low content of assimilable potassium and phosphorus.

Article Details

How to Cite
Carnero-Lazo, G., Hernández-Jiménez , A., Bernal-Fundora, A., & Terry-Alfonso, E. (2023). Characteristics of the Red Leached Fersialitic soils of the high southern plain of Pinar del Río. Cultivos Tropicales, 43(3), https://cu-id.com/2050/v43n3e05. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1673
Section
Original Article

References

Rodríguez SG, Botello MAE. Stevia La Hierba Dulce ¿ Puede crecer en Tabasco? Kuxulkab’ [Internet]. 2021;27(58):41–7. Available from: https://revistas.ujat.mx/index.php/kuxulkab/article/view/3920

Lugo-Morales Y, Díaz-Solares M, Altunaga-Pérez N, Castro-Cabrera I, Sande-Santos D, Aparecida-Takahashi J, et al. Contenido de antocianinas, vitamina C y actividad antioxidante en siete variedades de frutos de Morus alba L. Pastos y Forrajes [Internet]. 2021 [cited 24/01/2022];44. Available from: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-03942021000100018&lng=es&nrm=iso&tlng=es

Arslan M, Zareef M, Tahir HE, Rakha A, Xiaobo Z, Mahunu GK. Chapter 11 - Medicinal and therapeutic potential of Roselle (Hibiscus sabdariffa). In: Mariod AA, Tahir HE, Mahunu GK, editors. Roselle (Hibiscus sabdariffa) [Internet]. Academic Press; 2021 [cited 24/01/2022]. p. 155–86. doi:10.1016/B978-0-12-822100-6.00007-0

de Moura Macêdo M do A, Souza RTB, Costa DN, dos Santos JO, dos Reis RB, da Silva LL, et al. Prospecção científica e tecnológica de quercetina: uso de espécies de Malpighia L. (acerola) como potencial para o tratamento de COVID-19. Research, Society and Development [Internet]. 2022;11(1):e19711124715–e19711124715. Available from: https://rsdjournal.org/index.php/rsd/article/view/24715

Arlı M, Çelik H, Fakültesi E. The Biological Importance of Curcumin. 2020 [cited 24/01/2022]; Available from: http://acikerisim.agri.edu.tr/xmlui/handle/20.500.12501/2016

González Medina S. Revisión bibliográfica sobre la caracterización del aceite de semilla de Sacha Inchi (Plukenetia volubilis L.) y las propiedades de sus emulsiones. 2021; Available from: https://repositorio.uniandes.edu.co/bitstream/handle/1992/51635/22697.pdf?sequence=1&isAllowed=y

Goyal A, Tanwar B, Sihag MK, Sharma V. Sacha Inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry [Internet]. 2022;373:131459. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0308814621024651

Kodahl N, Sørensen M. Sacha Inchi (Plukenetia volubilis L.) Is an Underutilized Crop with a Great Potential. Agronomy [Internet]. 2021;11(6):1066. Available from: https://www.mdpi.com/2073-4395/11/6/1066

Hernández-Jimenez A, Pérez-Jimémez JM, Bosch Infante D. Clasificación de los suelos de Cuba 2015. Libro [Internet]. [cited 24/01/2022]. Available from: https://isbn.cloud/9789597023777/clasificacion-de-los-suelos-de-cuba-2015/

Dobrovolskii G, Urusevskii IS. Geografía de Suelos (en ruso) [Internet]. Rusia: Universidad de Moscú; 2006 [cited 24/01/2022]. Available from: https://www.chitai-gorod.ru/catalog/book/946395/

Cooperative Research Group on Chinese Soil Taxonomy, Li F, Gong Z, Zhongguo ke xue yuan, Nanjing tu rang yan jiu suo, Guo jia zi ran ke xue ji jin wei yuan hui (China). Chinese soil taxonomy [Internet]. Beijing; New York: Science Press; 2001. Available from: https://www.worldcat.org/title/chinese-soil-taxonomy/oclc/52117246

FAO F and AO. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps [Internet]. FAO. Roma; 2015. Available from: https://www.fao.org/3/i3794en/I3794en.pdf

Iturralde Vinent MA. Los movimientos tectónicos de la etapa de desarrollo platafórmico en Cuba. 1977;24.

Gradusov, B. P., Cherniajovski, A. G., Chiyikova I. P. Composición mineralógica de la fracción arcillosa de los suelos en relación con la evolución del medio (en ruso). En colección de artículos científicos “Génesis y fertilidad del suelo de las regiones del sur y su utilización. Instituto de Suelos V. V. Dokuchaev,; 1987. 106–113 p.

Kartashov, I. P., Cherniajovski, A. G., Peñalver, L. El Antropógeno de Cuba (en ruso). Moscú: Nauka; 1976. 107–145 p.

Mapa Genético de los Suelos de Cuba. Instituto de Suelos: Instituto Cubano de Geodesia y Cartografía; 1970.

Hernández, A., Ascanio M.O., Morales M., Bojórquez J.I., García N.E. y García J.D. El Suelo: Fundamentos sobre su formación, los cambios globales y su manejo [Internet]. México: Universidad Autónoma de Nayarit; 2006. 255 p. Available from: https://www.worldcat.org/title/suelo-fundamentos-sobre-su-formacion-los-cambios-globales-y-su-manejo/oclc/310768849

Hernández-Jiménez A, Pérez-Jiménez JM, Bosch-Infante D, Speck NC. La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales [Internet]. 2019;40(1). Available from: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0258-59362019000100015&lng=es&nrm=iso&tlng=es

Zúñiga Ugalde F. Essential of Soil Science: Soil Formation, Functions, Use and Classification (World Reference Base, WRB). 2018. Agro Sur; Vol. 47 Núm. 1 (2019) [Internet]. 2019;171. Available from: http://revistas.uach.cl/index.php/agrosur/article/view/5934

Jiménez AH, Benítez YB, Amaya FLM, Cruz MM. Presencia de propiedades vérticas en los suelos Fersialíticos de la antigua provincia La Habana. 2011;32(2):6. Available from: https://www.redalyc.org/pdf/1932/193222422002.pdf

Bernal-Fundora A, Hernández-Jiménez A, González-Cañizares PJ, Cabrera-Rodríguez A. Caracterización de dos tipos de suelos dedicados a la producción de plantas forrajeras. Cultivos Tropicales [Internet]. 2019;40(3). Available from: http://scielo.sld.cu/scielo.php?pid=S0258-59362019000300005&script=sci_arttext&tlng=en

Hernández Jiménez A. Importancia del estudio genético de los suelos. 1966;Consejo del Plan de la Enseñanza Tecnológica de Suelos, Fertilizantes y Ganadería. La Habana, Cuba, No. 2:36–65.

Gong Zitong. Progress in Soil Classification of China. In: Soil Classification. Report of the International Conference on Soil Classification, 12-16 September 1988. Alma- Ata, URSS; 1990. 123–141 p.

Egorov, V. V., Fridland, V. M., Ivanova, E. I., Rozov, N. N., Nosin, V. A., Friev, T. A. Diagnóstico y Clasificación de los Suelos de Rusia (en ruso). Kolos; 1977. 219 p.

Guerasimov, I.P., Glazovskaya M.A. Fundamentals of Soil Science and Soil Geography [Internet]. Israel Program for Scientific Translations, Jerusalem; 1965. 382 p. Available from: https://www.abebooks.com/Fundamentals-Soil-Science-Geography-Gerasimov-Glazovskaya/30617502070/bd

Vera Macías L, Gallo F, Guzmán Cedeño A, Jiménez A, Sacon A, Pazmiño D. Aportes al conocimiento edafológico para lograr la agricultura sostenible del sistema Carrizal - Chone [Internet]. 2017. Available from: https://www.researchgate.net/publication/330968102_Aportes_al_conocimiento_edafologico_para_lograr_la_agricultura_sostenible_del_sistema_Carrizal_-_Chone

Zong M, Lin C, Li S, Li H, Duan C, Peng C, et al. Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Science of The Total Environment [Internet]. 2021 [cited 24/01/2022];761:143253. doi:10.1016/j.scitotenv.2020.143253

Luna DV, Díaz M del CC, Escamilla T de JP, Romero ÁHH, Aponte AR. Secuestro de carbono en suelo cafetalero con alta pendiente en la Sierra de Santa Marta. Revista Biológico Agropecuaria Tuxpan [Internet]. 2018 [cited 24/01/2022];6(1):113–20. doi:10.47808/revistabioagro.v6i1.144

Gómez SPM, Berdugo SEB, Salomón JSC, Pulido SYP, Casadiego YAS, Guzmán MCV, et al. Capitulo 9. Prevención de la erosión y conservación de la fertilidad del suelo. Libros Universidad Nacional Abierta y a Distancia [Internet]. 2019;172–87. doi:10.22490/9789586516358.09

La Manna L, Tarabini M, Gomez F, Rostagno CM. Changes in soil organic matter associated with afforestation affect erosion processes: The case of erodible volcanic soils from Patagonia. Geoderma [Internet]. 2021;403:115265. doi:10.1016/j.geoderma.2021.115265

Holz M, Augustin J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis. Geoderma [Internet]. 2021;397:115045. doi:10.1016/j.geoderma.2021.115045

Lal R. Fate of Soil Carbon Transported by Erosional Processes. Applied Sciences [Internet]. 2022;12(1):48. doi:10.3390/app12010048

Orjuela HB. El carbono orgánico del suelo y su papel frente al cambio climático. Revista de Ciencias Agrícolas [Internet]. 2018;35(1):82–96. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=6572299

Schlesinger WH, Amundson R. Managing for soil carbon sequestration: Let’s get realistic. Global Change Biology [Internet]. 2019;25(2):386–9. doi:10.1111/gcb.14478

Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M, Koutika L-S, et al. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio [Internet]. 2020;49(1):350–60. doi:10.1007/s13280-019-01165-2

Leifeld J, Menichetti L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications [Internet]. 2018;9(1):1071. doi:10.1038/s41467-018-03406-6

Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, Smith P, et al. The role of soil carbon in natural climate solutions. Nature Sustainability [Internet]. 2020;3(5):391–8. doi:10.1038/s41893-020-0491-z

Mayer S, Wiesmeier M, Sakamoto E, Hübner R, Cardinael R, Kühnel A, et al. Soil organic carbon sequestration in temperate agroforestry systems – A meta-analysis. Agriculture, Ecosystems & Environment [Internet]. 2022;323:107689. doi:10.1016/j.agee.2021.107689

Hafif B, Sasmita KD. The organic carbon dynamics of peat soil under liberica coffee cultivation. IOP Conference Series: Earth and Environmental Science [Internet]. 2020;418(1):012021. doi:10.1088/1755-1315/418/1/012021

Ramesh T, Bolan NS, Kirkham MB, Wijesekara H, Kanchikerimath M, Srinivasa Rao C, et al. Chapter One - Soil organic carbon dynamics: Impact of land use changes and management practices: A review. In: Sparks DL, editor. Advances in Agronomy [Internet]. Academic Press; 2019. p. 1–107. doi:10.1016/bs.agron.2019.02.001

Tanveer SK, Lu X, Shah S-U-S, Hussain I, Sohail M. Soil Carbon Sequestration through Agronomic Management Practices [Internet]. IntechOpen; 2019. Available from: https://www.intechopen.com/chapters/69508

Li B-B, Li P-P, Yang X-M, Xiao H-B, Xu M-X, Liu G-B. Land-use conversion changes deep soil organic carbon stock in the Chinese Loess Plateau. Land Degradation & Development [Internet]. 2021;32(1):505–17. doi:10.1002/ldr.3644

Ansari MA, Choudhury BU, Mandal S, Jat SL, Meitei CB. Converting primary forests to cultivated lands: Long-term effects on the vertical distribution of soil carbon and biological activity in the foothills of Eastern himalaya. Journal of Environmental Management [Internet]. 2022;301:113886. doi:10.1016/j.jenvman.2021.113886

Mesías-Gallo FW, Hernández-Jiménez A, Vera-Macías LR, Guzmán-Cedeño ÁM, Cedeño-Sacón ÁF, Ormaza-Cedeño KP, et al. Reservas de carbono orgánico en suelos de la llanura fluvial Calceta-Tosagua, Manabí, Ecuador. Cultivos Tropicales [Internet]. 39(4):27–33. doi:10.1234/ct.v39i4.1477

Alberto Hernández, Marisol Morales, Greter Carnero, Yakelín Hernández, Zoilo Terán, Dayana Grandio, et al. Nuevos resultados sobre el cambio de las propiedades de los suelos Ferralíticos Rojos Lixiviados de la “LLanura Roja de La Habana” [Internet]. Ediciones INCA. 2020. 159 p. Available from: https://ediciones.inca.edu.cu/

Carnero-Lazo G, Hernández-Jiménez A, Terry-Alfonso E, Bojorquez-Serrano JI. Cambios en la reservas de carbono orgánico en suelos ferraliticos rojos lixiviados de Mayabeque, Cuba. Revista Bio Ciencias [Internet]. 2019;6:12. Available from: http://revistabiociencias.uan.mx/index.php/BIOCIENCIAS/article/view/564

Most read articles by the same author(s)

<< < 1 2