Big data management for sugarcane breeding program

Main Article Content

Reynaldo Rodríguez-Gross
Yaquelin Puchades-Isaguirre
Wilfre Aiche-Maceo
Héctor García-Pérez

Abstract

The aim of this work was to design and establish a model of macro data management to facilitate decision-making in the Sugarcane Breeding Program in Cuba and increase its efficiency. For this, available sources of information from the selection process from the period 2000 to 2017 and those coming from the agroproductive response of cultivars in production areas were used. A model was designed and applied that includes components such as: infrastructure, collection, validation, storage, processing, analysis and visualization. A case study of the C86-12 x CP70-1133 cross was conducted to characterize its selection background. As a result, the big data approach made it possible to obtain a compilation of primary data and selection results, estimate the genetic value of parents and crosses, classify the crosses and facilitate decision-making in the sugarcane breeding program in Cuba to obtain new commercial cultivars. Its application in the case study guaranteed access to all available information on the subject and recommending its best management.

Article Details

How to Cite
Rodríguez-Gross, R., Puchades-Isaguirre, Y., Aiche-Maceo, W., & García-Pérez, H. (2023). Big data management for sugarcane breeding program. Cultivos Tropicales, 43(3), https://cu-id.com/2050/v43n3e07. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1685
Section
Original Article

References

Sun J, Zhou Z, Bu Y, Zhuo J, Chen Y, Li D. Research and development for potted flowers automated grading system based on internet of things. Journal of Shenyang Agricultural University [Internet]. 2013;44(5):687-91. Available from: https://www.cabdirect.org/cabdirect/abstract/20133406244

Yang C. Big Data and its potential applications on agricultural production. Crop, Environment & Bioinformatics [Internet]. 2014;11(1):51-6. Available from: https://www.cabdirect.org/cabdirect/abstract/20143190953

Chen M, Mao S, Liu Y. Big data: A survey. Mobile networks and applications [Internet]. 2014;19(2):171-209. Available from: https://dl.acm.org/doi/10.1007/s11036-013-0489-0

Mazzocchi F, Lapointe FJ. Sobre el ‘big data’:¿ Cómo podríamos dar sentido a los macrodatos? Mètode: Revista de difusión de la Investigación [Internet]. 2020;1(104):34-41. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=7391781

Wolfert S, Ge L, Verdouw C, Bogaardt M-J. Big data in smart farming-a review. Agricultural systems [Internet]. 2017;153:69-80. Available from: https://www.sciencedirect.com/science/article/pii/S0308521X16303754

Park S, Jackson P, Berding N, Inman-Bamber G. Conventional breeding practices within the Australian sugarcane breeding program. In: Proceedings of the Australian Society of Sugar Cane Technologists [Internet]. 2007. p. 113-21. Available from: https://www.researchgate.net/profile/Nils-Berding/publication/305390103_Conventional_breeding_practices_within_the_Australian_sugarcane_breeding_program/links/578c603608ae5c86c9a14e99/Conventional-breeding-practices-within-the-Australian-sugarcane-breeding-program.pdf

Yadav S, Jackson P, Wei X, Ross EM, Aitken K, Deomano E, et al. Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy [Internet]. 2020;10(4):585. Available from: https://www.mdpi.com/2073-4395/10/4/585

González R. Variedades de caña de azúcar cultivadas en Cuba. Cronología, legislación, metodologías y conceptos relacionados. Instituto Cubano de Investigaciones de Derivados de La Caña de Azúcar; 2019.

Rodríguez R, Puchades Y, Abiche W, Rill S, García H. SASEL: software for data management generated in the Cuban sugarcane-breeding program. In: Proceedings of the International Society of Sugar Cane Technologists. 2016. p. 63-6.

Jorge H, González R, Casas M, Jorge I. Normas y procedimientos del programa de mejoramiento genético de la caña de azúcar en Cuba. PUBLINICA, La Habana. 2011;

Rodríguez-Gross R, Puchades-Isaguirre Y, Aiche-Maceo W, Cornide-Hernández MT. Modelo matemático para estimar el valor genético de progenitores y cruces en caña de azúcar. Cultivos Tropicales [Internet]. 2018;39(2):81-8. Available from: http://scielo.sld.cu/scielo.php?pid=S0258-59362018000200011&script=sci_arttext&tlng=en

Rodríguez-Gross R, Puchades-Isaguirre Y, Aiche-Maceo W. Metodología de validación y manejo de cruces en la mejora genética en caña de azúcar. Cultivos Tropicales [Internet]. 2020;41(1). Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362020000100002

Kumar H, Menakadevi T. A review on big data analytics in the field of agriculture. International Journal of Latest Transactions in Engineering and Science [Internet]. 2017;1(4):1-10. Available from: http://www.ijltes.com/wp-content/uploads/2017/02/1.pdf

Everingham Y, Sexton J, Skocaj D, Inman-Bamber G. Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for sustainable development [Internet]. 2016;36(2):27. Available from: https://link.springer.com/content/pdf/10.1007/s13593-016-0364-z.pdf

Everingham Y, Sexton J, Robson A. A statistical approach for identifying important climatic influences on sugarcane yields. In: Proceedings of the 37th Conference of the Australian Society of Sugar Cane Technologists, 28-30 April 2015, Bundaberg, Queensland, Australia [Internet]. Australian Society of Sugar Cane Technologists; 2015. Available from: https://www.researchgate.net/publication/287208302_A_Statisical_Approach_for_identifying_Important_Climatic_Influences_on_Sugarcane_Yields

Biqing L, Yongfa L, Miao T, Shiyong Z. Design and Implementation of Sugarcane Growth Monitoring System based on RFID and ZigBee. International Journal of Online Engineering [Internet]. 2018;14(3). Available from: https://www.researchgate.net/publication/324114641_Design_and_Implementation_of_Sugarcane_Growth_Monitoring_System_based_on_RFID_and_ZigBee

Most read articles by the same author(s)