Climate zoning of Mayarí municipality based on Lang index

Main Article Content

Roberto Alejandro García-Reyes
María Elena Pérez-Ruíz
Juan Alejandro Villazón-Gómez
Mirna Cruz-Pérez

Abstract

The objective of the research was the climatic zoning of the Mayarí municipality; Lang Index was the estimation by use of data from meteorological station and WorldClim 2. The monthly images of precipitation and average temperature provided by WorldClim 2 were used with a spatial resolution of 30 seconds in the system of WGS 1984 EPSG coordinates: 4326. The images were processed in ArcGIS 3.10 software; and in the Raster Calculator option, Lang Index was obtained. For the extraction of the values, a representation of 40 random points was made that covered the entire region under study, separated at a distance of 10 km. It was determined by linear regression in the STATGRAPHICS Plus 5.0 software; the relationship between Lang Index estimated by WorldClim 2 and that calculated with data from the Guaro meteorological station located in Mayarí municipality. The use of WorldClim 2 showed the existence of three climatic zones (arid, semi-arid and semi-humid). Its estimation had a high determination and correlation for the calculated values of said index, which allows it to be used in territories where there is a low number of meteorological stations for taking climatic data.

Article Details

How to Cite
García-Reyes, R. A., Pérez-Ruíz, M. E., Villazón-Gómez, J. A., & Cruz-Pérez, M. (2023). Climate zoning of Mayarí municipality based on Lang index. Cultivos Tropicales, 44(1), https://cu-id.com/2050/v44n1e03. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1689
Section
Original Article

References

Hernández-Cerda ME, Ordoñez-Díaz M de J, Giménez-de Azcárate J. Análisis comparativo de dos sistemas de clasificación bioclimática aplicados en México. Investigaciones geográficas. 2018;(95):1-14. doi:10.14350/rig.57451

Alessandro O, Nyman P. Aridity indices predict organic matter decomposition and comminution processes at landscape scale. Ecological Indicators. 2017;78:531-40.

Pineda-Santos LD, Suárez-Hernández JE. Elaboración de un SIG orientado a la zonificación agroecológica de los cultivos. Revista Ingeniería Agrícola. 2014;4(3):28-32.

Grove AT. Climatic classification: concepts for dry tropical environments. International Crops Research Institute for the Semi-Arid Tropics: Climatic classification: a consultants’ meeting, 14-16 April 1980. 1980;1-5.

Ferrelli F, Bustos ML, Piccolo MC, Cisneros MAH, Perillo GME. Downscaling de variables climáticas a partir del reanálisis NCEP/NCAR en el sudoeste de la provincia de Buenos Aires (Argentina). Papeles de Geografía. 2016;(62):21-33. doi:10.6018/geografia/2016/239051

Zhang Y, Qu H, Yang X, Wang M, Qin N, Zou Y. Cropping system optimization for drought prevention and disaster reduction with a risk assessment model in Sichuan Province. Global Ecology and Conservation. 2020;23:e01095. doi:10.1016/j.gecco.2020.e01095

Tsiros IX, Nastos P, Proutsos ND, Tsaousidis A. Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1900-1997). Atmospheric Research. 2020;240:104914. doi:10.1016/j.atmosres.2020.104914

Ferner J, Schmidtlein S, Guuroh RT, Lopatin J, Linstädter A. Disentangling effects of climate and land-use change on West African drylands’ forage supply. Global Environmental Change. 2018;53:24-38. doi:10.1016/j.gloenvcha.2018.08.007

ONEI. Anuario Estadístico de Mayarí 2018. Habana; 2019. 16 p.

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017;37(12):4302-15. doi:https://doi.org/10.1002/joc.5086

IGAC (Instituto Geográfico Agustín Codazzi). Instructivo. Zonificación climática grupo interno de trabajo de levantamientos agrológicos. Cód. I40100-05/1 4.V1 [Internet]. 2014 p. 10. Available from: https://repositorio.uho.edu.cu/bitstream/handle/uho/8854/Osman%20A%20Vel%C3%A1zquez%20S%C3%A1nchez.pdf?sequence=1&isAllowed=y

Luján-Bustos M, Ferrelli F, Piccolo MC. Estudio comparativo de tres modelos climáticos en Argentina. 2017;40(1):34-43. doi:10.11137/2017_1_34_43

Batista P-D, Dámaso R. Algunas consideraciones sobre el comportamiento de la sequía agrícola en la agricultura de Cuba y el uso de imágenes por satélites en su evaluación. Cultivos Tropicales. 2016;37(3):22-41.

Vema V, Sudheer KP, Chaubey I. Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions. Agricultural Water Management. 2019;218:82-93. doi:10.1016/j.agwat.2019.03.028

Fraga H, Guimarães N, Santos JA. Future changes in rice bioclimatic growing conditions in Portugal. Agronomy. 2019;9(11):674.

Calci Quispe BE. “Aplicación de modelos climáticos globales para la caracterización climática en la microcuenca de la Laguna de Chacas y sus Proyecciones de cambio Climático al 2050 y 2070” [Internet]. [Perú]: Andina Néstor Cáceres Velásquez; 2018. 89 p. Available from: https://alicia.concytec.gob.pe/vufind/Record/UANT_f44a3f4846e0624b23a572e08e20a203/Details

Poggio L, Simonetti E, Gimona A. Enhancing the WorldClim data set for national and regional applications. Science of The Total Environment. 2018;625:1628-43. doi:10.1016/j.scitotenv.2017.12.258

Casa-Martín F da, Echeverría-Valiente E, D’Amico FC. Zonificación climática para su aplicación al diseño bioclimático. Aplicación en Galicia (España). Informes de la Construcción. 2017;69(547):e218-e218. doi:10.3989/id55319

Similar Articles

You may also start an advanced similarity search for this article.