The living soil: a bit of what happens in this environment. An emphasis on phytopathogens
Main Article Content
Abstract
Soil is an ecosystem with a carbon pool that suports biological diversity. In this review, we present how significant is the symbiosis between the plant root and the macro and microorganisms of the soil, as well as the benefits it generates to achieve an ecological balance and maintain low populations of plant pathogens in food production. For instance, earthworms, collembola, mealybugs and oribatid mites greatly influence the functioning of the soil system, as they build and maintain soil structure and actively participate in nutrient cycling through mineralization and humification processes, in addition to consuming pathogens. On the other hand, microorganisms such as mycorrhizal fungi, which benefit by absorbing the nutrients of the plant and help it absorb minerals from the soil, provide protection to the roots against phytopathogens. Mycorrhizal fungi induce changes in the plant and then the plant responds by producing exudates from the roots that reduce or repel plant pathogens. Another example is the Trichoderma fungus, known as a biocontrol agent for producing secondary metabolites with antimicrobial activity against plant pathogens. Biological control agents and their secondary metabolites are potential approaches currently being used to reduce or replace agrochemicals. Finally, integrated crop management promotes competition and balance essential to maintaining soil health and ensuring food production.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
ONU. Objetivos del Desarrollo Sostenible de la Agenda 2030 ONU. 2021 [citado 20/07/2021]. Disponible en: https://www.un.org/sustainabledevelopment/
Avila-Quezada G, Silva-Rojas HV, Sánchez-Chávez E, Leyva-Mir G, Martínez-Bolaños L, Guerrero-Prieto V, et al. Seguridad alimentaria: la continua lucha contra las enfermedades de los cultivos. Tecnociencia Chihuahua. 2016;10(3):133-142.
Cintora-Martínez EA, Leyva-Mir SG, Ayala-Escobar V, Avila-Quezada G, Camacho-Tapia M, Tovar-Pedraza JM. Pomegranate fruit rot caused by Pilidiella granati in Mexico. Australasian Plant Disease Notes. 2017;12(1):4.
García-González T, Sáenz-Hidalgo HK, Silva-Rojas HV, Morales-Nieto C, Vancheva T, Koebnik R, et al. Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. The Plant Pathology Journal. 2018;34(1):1-10.
Avila-Quezada GD, Esquivel JF, Silva-Rojas HV, Leyva-Mir G, García-Avila C, Noriega-Orozco L, et al. Emerging plant diseases under a changing climate scenario: Threats to our global food supply. Emirates Journal of Food and Agriculture. 2018;30(6):443-450.
Sánchez-Chávez E, Silva-Rojas HV, Leyva-Mir G, Villareal-Guerrero F, Jiménez-Castro J, Molina-Gayoso E, et al. An effective strategy to reduce the incidence of Phytophthora root and crown rot in bell pepper. Interciencia. 2017;42(4):229-235.
Galvez ZYA, Burbano VEM. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. NOVA Publicación en Ciencias Biomédicas. 2015;12(21):67-79.
Madrid-Delgado G, Orozco-Miranda M, Cruz-Osorio M, Hernández-Rodríguez A, Rodríguez-Heredia R, Roa-Huerta M, et al. Pathways of phosphorus absorption and early signaling between the mycorrhizal fungi and plants. Phyton International Jornal of Experimental Botany. 2021;90(5):1321-1338.
Le Bayon RC, Bullinger-Weber G, Schomburg A, Turberg P, Schlaepfer R, Guenat C. (2017). Earthworms as ecosystem engineers: A review. Earthworms: Types, Roles and Research. NOVA Science Publishers, New York, 129-178.
Sánchez-Rosales R, Hernández-Rodríguez A, Ojeda-Barrios D, Robles-Hernández L, González-Franco A, Parra-Quezada R. Comparison of three systems of decomposition of agricultural residues for the production of organic fertilizers. Chilean Journal of Agricultural Research. 2017;77(3):287-292.
Sulaiman ISC, Mohamad A. The use of vermiwash and vermicompost extract in plant disease and pest control. In: Natural Remedies for Pest, Disease and Weed Control. Academic Press; 2020. p. 187-201.
Andleeb S, Ejaz M, Awan UA, Ali S, Kiyani A, Shafique I, et al. In vitro screening of mucus and solvent extracts of Eisenia foetida against human bacterial and fungal pathogens. Pakistan Journal of Pharmaceutical Sciences. 2016;29(3):969-977.
Prakash M, Gunasekaran G. Antibacterial activity of the indigenous earthworms Lampito mauritii (Kinberg) and Perionyx excavatus (Perrier). The Journal of Alternative and Complementary Medicine. 2011;17:167-170.
Jouni F. Synergistic interaction earthworm-microbiota: a role in the tolerance and detoxification of pesticides?. Agricultural sciences. Université d’Avignon. 2018. English. ffNNT: 2018AVIG0699ff. [citado 20/07/2021]. Disponible en: https://tel.archives-ouvertes.fr/tel-02074579/document
Edwards CA, Fletcher KE. Interactions between earthworms and microorganisms in organic-matter breakdown. Agriculture, Ecosystems & Environment. 1988;24(1-3):235-247.
Nath G, Singh K. Combination of vermicomposts and biopesticides against nematode (Pratylenchus sp.) and their effect on growth and yield of tomato (Lycopersicon esculentum). IIOAB Journal. 2011;2:27-35.
Rostami M, Olia M, Arabi M. Evaluation of the effects of earthworm Eisenia fetida-based products on the pathogenicity of root-knot nematode (Meloidogyne javanica) infecting cucumber. International Journal of Recycling of Organic Waste in Agriculture. 2014;3(2):58.
Edwards CA, Arancon NQ, Emerson E, Pulliam R. Suppressing plant parasitic nematodes and arthropod pests with vermicompost teas. Biocycle. 2007;48(12):38-39.
Euteneuer P, Wagentristl H, Steinkellner S, Scheibreithner C, Zaller JG. Earthworms affect decomposition of soil-borne plant pathogen Sclerotinia sclerotiorum in a cover crop field experiment. Applied Soil Ecology. 2019;138:88-93.
Charles NJ, Martín Alonso NJ. Uso y manejo de hongos micorrízicos arbusculares (HMA) y humus de lombriz en tomate (Solanum lycopersicum L.), bajo sistema protegido. Cultivos Tropicales. 2015;36(1):55-64.
González-Escobedo R, Muñoz-Castellanos LN, Muñoz-Ramirez ZY, Guigón López C, Avila-Quezada GD. Microbial community analysis of rhizosphere of healthy and wilted pepper (Capsicum annuum L.) in an organic farming system. Microbial Ecology. 2021; Por asignar
Zhang H, Franken P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. Mycorrhiza. 2014;24:419-430.
Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science. 2015;6:786.
Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Science. 2003;165(5):1137-1145.
Chakravarty P, Unestam T. Differential influence of ectomycorrhizae on plant growth and disease resistance in Pinus sylvestris seedlings. Journal of Phytopathology. 1987;120(2):104-120.
Eke P, Adamou S, Fokom R, Nya VD, Fokou PVT, Wakam LN, et al. Arbuscular mycorrhizal fungi alter antifungal potential of lemongrass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon. 2020;6(12):e05737.
da Silva Campos MA. Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: A sustainable alternative. Crop Protection. 2020;135:105203.
Sharma M, Saini I, Kaushik P, Al Dawsari MM, Al Balawi T, Alam P. Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi Journal of Biological Sciences. 2021;28(7): 3685-3691.
Stummer BE, Zhang Q, Zhang X, Warren RA, Harvey PR. Quantification of Trichoderma afroharzianum, Trichoderma harzianum and Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta suppression of the crown rot pathogen Fusarium pseudograminearum. Journal of Applied Microbiology. 2020; 129(4):971-990.
TariqJaveed M, Farooq T, Al-Hazmi AS, Hussain MD, Rehman AU. Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. Journal of Invertebrate Pathology. 2021;107626.
Pozo-Serrano J, Cruz ERDL, Teresa-Cardoso M, Rodríguez-Pérez A, García-Pupo J, Pérez-Tejeda Y, et al. Efectividad antagónica In vitro de Trichoderma sp., frente a Stemphylium lycopersici. Cultivos Tropicales. 2019;40(3).
Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science. 2019;10:845.
Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal. 2014;8(1):127-139.
Vinale F, Ghisalberti EL, Sivasithamparam K, Marral R, Ritieni A, Ferracane R, Woo S, Lorito M. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology. 2009;48(6):705-711.
Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 2020;8(6), 817.
Sonkar P, Chandra R, Singh R, Kumar S. Study on management of Fusarium oxysporum through different mode of action of Trichoderma spp. International Journal of Current Trends Science and Technology. 2018;8:20192-20200.
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, et al. Regulation and role of fungal secondary metabolites. Annual Review of Genetics. 2016;50:371-392.
Shyamli S, Prem D, Rs T, Atar S. Production and antifungal activity of secondary metabolites of Trichoderma virens. Pesticide Research Journal. 2005;17(2):26-29.
Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology. 2012;158:166-175.
Sha S, Liu L, Pan S, Wang WM. Isolation and purification of antifungal components from Trichoderma harzianum ferment broth by high-speed counter-current chromatography. Chinese Journal of Biological Control. 2013;29(1):83-88.
Marler TE, Krishnapillai MV. Vertical strata and stem carbon dioxide efflux in Cycas trees. Plants. 2020;9(2):230.
Chikov VI, Akhtyamova GA, Khamidullina LA. Ecological significance of the interaction of photosynthesis light and dark processes. American Journal of Plant Sciences. 2021;12(04):624.
Ferrero Holtz EW, Gonzalez MG, Giuffré L, Ciarlo E. Glomalins and their relationship with soil carbon. International Journal of Applied Science and Technology. 2016;6(2):69-73.
Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, et al. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist. 2015;205(4):1537-1551.
Kittredge J. Soil Carbon Restoration: Can Biology do the Job?. NE Organic farming association, Massachusetts Chapter, 16. 2015. [citado 20/07/2021]. Disponible en: https://www.unifiedfieldcorporation.com/wp-content/uploads/2015/11/2015_White_Paper_web.pdf
Olivas‑Tarango AL, Tarango‑Rivero SH, Ávila‑Quezada GD. Pecan production improvement by zinc under drip irrigation in calcareous soils. Terra Latinoamericana, 2021;39:1-12.
Tarango-Rivero SH, Ávila-Quezada GD, Jacobo-Cuellar JL, Ramírez-Valdespino CA, Orrantia-Borunda E, Rodríguez-Heredia R, Olivas-Tarango AL. Chelated zinc and beneficial microorganisms: A sustainable fertilization option for pecan production. Revista Chapingo. Serie horticultura, 2022;28(3):145-159.