Eficiencia fisiológica de la planta de frijol ante un déficit hídrico
Contenido principal del artículo
Resumen
La investigación se realizó en condiciones semicontroladas de noviembre a febrero de los años 2016, 2017 y 2018 en la Unidad Científico Tecnológica de Base Los Palacios, Cuba, con el objetivo de evaluar el efecto del déficit hídrico en la eficiencia fisiológica del frijol (Phaseolus vulgaris L.) cv. "Delicia 364". Se sembraron 80 semillas de frijol por macetero de 1,40 m2. Se utilizó un Diseño Experimental Completamente Aleatorizado, con tres tratamientos y cuatro repeticiones: dos con déficit hídrico (inicio de marchitamiento de las hojas y cuando se inició el amarillamiento del ápice de las hojas) y un testigo con riego a capacidad de campo. El déficit hídrico se aplicó cuando las plantas tenían entre tres y cuatro hojas verdaderas. Después de cada periodo de estrés se determinó el potencial hídrico foliar y en el momento de la cosecha la masa seca área, el rendimiento agrícola y sus componentes. Se encontró que el déficit hídrico impuesto en la fase vegetativa a diferentes intensidades causó un estado de estrés hídrico en la planta de frijol y después de recuperarse del mismo, provocó incrementos en la masa seca aérea, número de vainas y rendimiento agrícola. El déficit hídrico en plantas de frijol hasta el inicio del amarillamiento del ápice de las hojas, durante la fase vegetativa, incrementa la eficiencia fisiológica de la planta en función del riego, entre un 16-25 %, en cuanto a la masa seca aérea, el número de vainas por planta y el rendimiento agrícola.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
FAO. El futuro de la alimentación y la agricultura tendencias y desafíos [Internet]. 2017. Available from: http://www.fao.org/3/i6881s/i6881s.pdf. Consultado abril 2021
FAO. Versión resumida de El estado mundial de la agricultura y la alimentación. Superar los desafíos relacionados con el agua en la agricultura [Internet]. 2020. Available from: https://doi.org/10.4060/cb1441es
OECD-FAO. Perspectivas agrícolas 2019-2028. Enfoque especial: América Latina. OECD Publishing, París/Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) [Internet]. 2021 [cited 09/10/2021]. Available from: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2019-2028/summary/spanish_3930e850-es?parentId=http%3A%2F%2Finstance.metastore.ingenta.com%2Fcontent%2Fpublication%2F7b2e8ba3-es
Dávila R. Frijol más resistente a la sequía. Universidad Nacional Autónoma de México [Internet]. 2010 [cited 09/10/2021]. Available from: https://www.dgcs.unam.mx/boletin/bdboletin/2010_587.html
ONEI. Agricultura, ganadería, silvicultura y pesca. La Habana: Dirección de Estadísticas Agropecuarias, Oficina Nacional de Estadística e Información [Internet]. 2019; Available from: http://www.onei.gob.cu/sites/default/files/09_agricultura_ganaderia_y_pesca_2019_0.zip
Meriño-Hernandez Y, Boudet-Antomarchi A, Boicet-Fabre T, Barreiro EA, de Guevara L, Palacio AJ, et al. Rendimiento y tolerancia a la sequía de seis variedades de frijol común (Phaseolus vulgaris L.) en condiciones de campo. Centro Agrícola. 2015;42(1):69-74.
Domínguez-Suárez A, Darias-Rodríguez R, Martínez Dávalos Y, Alfonso-Negrín E. Tolerancia de variedades de frijol común (Phaseolus vulgaris) a condiciones de sequía en campo. Centro Agrícola. 2019;46(3):22-9.
Ruiz-Sanchez M, DellAmico-Rodriguez JM, Cabrera-Rodriguez JA, Munoz-Hernandez Y, M-Almeida F, Aroca R, et al. Rice plant response to suspension of the lamina of water. Part III. Cultivos Tropicales. 2020;41(2):NA-NA.
Ruiz-Sánchez M, Muños-Hernández Y, Dell’Ámico-Rodríguez JM, Cabrera-Rodríguez JA, Aroca R, Ruiz-Lozano JM. Response of rice (Oryza sativa L.) plant to suspension of the water lamina in three moments of its development. Part I. Cultivos Tropicales. 2017;38(2):61-9.
Pozo-Galves C, Cabrera-Alonso JR, Márquez-Reina E, Hernández-Hernández O, Ruiz-Sanchez M, Domínguez-Palacio D. Características y clasificación de suelos Gley Nodular Ferruginoso bajo cultivo intensivo de arroz en Los Palacios. Cultivos Tropicales. 2017;38(4):58-64.
Faure B, Benítez R, Rodríguez E, Grande O, Pérez P. Guía Técnica para la producción de frijol común y maíz. 1 ra ed. MINAG, La Habana, Cuba. 2014.
Siqueira JO, Franco AA. Biotecnologia do solo: fundamentos e perspectivas. Brasília: MEC. Brasil: ABEAS/ESAL/FAEPE; 1988 p. 179-216.
Morales-Guevara D, Dell’Amico-Rodríguez J, Jerez-Mompie E, Rodríguez-Hernández P, Álvarez-Bello I, Díaz Hernández Y, et al. A QuitoMax® effect in plants of (Phaseolus vulgaris L.) under two irrigation regimes. II. Physiological variables. Cultivos Tropicales. 2017;38(4):92-101.
Barrios-Gómez EJ, López-Castañeda C, Kohashi-Shibata J. Relaciones hídricas y temperaturas altas en frijol del tipo “flor de mayo.” Agronomía Costarricense. 2011;35(1):131-45.
Sánchez-Ruiz M, Cabrera-Rodríguez A, Dell JM, Rodríguez A, Muñoz-Hernández Y, Aroca-Álvarez R, et al. Categorization of the water status of rice inoculated with arbuscular mycorrhizae and with water deficit. Agronomía Mesoamericana. 2021;32(2):339-55.
Shan Z, Luo X, Wei M, Huang T, Khan A, Zhu Y. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Scientific Reports. 2018;8(1):1-12. doi:10.1038/s41598-018-35711-x
Chun SC, Paramasivan M, Chandrasekaran M. Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Frontiers in Microbiology [Internet]. 2018 [cited 09/10/2021];9. doi:10.3389/fmicb.2018.02525
Reyes-Matamoros J, Martínez-Moreno D, Rueda-Luna R, Rodríguez-Ramírez T. Efecto del estrés hídrico en plantas de frijol (Phaseolus vulgaris L.) en condiciones de invernadero. Revista Iberoamericana de Ciencias. 2014;1(2):191-203.
Pérez-Matos A. Caracterización morfoagronómica de cinco cultivares de frijol común (phaseolus vulgaris l) en el municipio de Jobabo. Revista Caribeña de Ciencias Sociales [Internet]. 2017 [cited 09/10/2021]; Available from: https://ideas.repec.org//a/erv/rccsrc/y2017i2017-1033.html
Izquierdo-Martínez M, Santana-Baños Y, García-Cabañas A, Carrodeguas-Díaz S, Aguiar-González I, Ruiz-Sanchez M, et al. Agronomic response of five common bean cultivars in an agroecosystem of Consolación del Sur municipality. Centro Agrícola. 2018;45(3):11-6.
Maqueira-López LA, Rojan-Herrera O, Mesa S a. P, Torres-de Noval W la. Growth and yield of black bean cultivars (Phaseolus vulgaris L.) in Los Palacios town. Cultivos Tropicales. 2017;38(3):58-63.
Polón-Pérez R, Miranda-Caballero A, Ramírez-Arrebato MA, Maqueira-López LA. Efectos del estrés de agua sobre el rendimiento de granos en la fase vegetativa en el cultivo del frijol (Phaseolus vulgaris L.). Revista Ciencias Técnicas Agropecuarias. 2014;23(4):33-6.
Nielsen DC. Black Bean Sensitivity to Water Stress at Various Growth Stages. Crop Science. 1998;38(2):422-7. doi:https://doi.org/10.2135/cropsci1998.0011183X003800020025x
Dominguez A, Rodríguez R, Dávalos Y, Castillo M, Sosa D. Selection of varieties of common red bean (Phaseolus vulgaris L.), tolerant to drought in different irrigation conditions in the field. Bionatura. 2021;6(1):1473-7. doi:10.21931/RB/2021.06.01.6
Ruiz-Sánchez M, Muños Y, Ámico J, Cabrera J, Polón R, Aroca R, et al. Recovery of the rice plant to the suspension of the water lamina. Part II. 2018;39(3):75-80.
Polon-Perez R, Ruiz-Sanchez M, Miranda-Caballero A, Ramirez-Arrebato MA. Effects of Water Stress on Grain Yield in the Vegetative Phase of bean Cultivation (Phaseolus vulgaris L.). Revista Ciencias Técnicas Agropecuarias. 2017;26(1):66-70.
Garcia M, Espinosa A. Efecto de la sequía en el rendimiento del cultivo del frijol [Internet]. Monografias.com. 2012 [cited 09/10/2021]. Available from: https://www.monografias.com/trabajos94/efecto-sequia-rendimiento-del-cultivo-del-frijol/efecto-sequia-rendimiento-del-cultivo-del-frijol
Nahar K, Ullah SM, Gretzmacher R. Influence of soil moisture stress on height, dry matter and yield of seven tomato cultivars. Canadian J. Scientific Industrial Res. 2011;2(4):160-3.