Efectos nutricionales del estrés salino en plantas de tomate (Solanum lycopersicum L.) micorrizadas

Contenido principal del artículo

Laura R. Medina García
Yakelin Rodríguez Yon
Nicolás Medina Basso

Resumen

La salinidad de los suelos es uno de los problemas agrícolas más extendidos, inhibiendo el crecimiento de las plantas y su productividad. Los hongos micorrízicos arbusculares (HMA) se consideran una alternativa eficaz para la mejora biológica del estrés por salinidad, siendo el objetivo del presente trabajo determinar el efecto de la inoculación con diferentes cepas de HMA sobre el estado nutricional de plantas de tomate en condiciones de estrés salino. En el experimento se utilizaron plantas de tomate (Solanum lycopersicum L.) de la variedad Vyta, estudiándose el efecto de la inoculación de diferentes cepas de HMA y tres niveles diferentes de salinidad sobre el estado nutricional de las plantas. Se observó que las plantas inoculadas con las cepas de HMA tuvieron un mejor estado nutricional, tanto en condiciones normales como sometidas a estrés salino, siendo notable la disminución de los contenidos de sodio en las plantas colonizadas por dichas cepas bajo condiciones de estrés por salinidad.

Detalles del artículo

Cómo citar
Medina García, L. R., Rodríguez Yon, Y., & Medina Basso, N. (2025). Efectos nutricionales del estrés salino en plantas de tomate (Solanum lycopersicum L.) micorrizadas. Cultivos Tropicales, 46(2), https://cu-id.com/2050/v46n2e05. Recuperado a partir de https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1875
Sección
Artículo Original

Citas

Wani SH, Kumar V, Khare T, Guddimalli R, MP, Solymosi K, et al. Engineering salinity tolerance in plants: progress and prospects. Planta. 2020;251(76):2-29. doi 10.1007/s00425-020-03366-6.

Hernández JA. Salinity Tolerance in Plants: Trends and Perspectives. Int J Mol Sci. 2019;20(10):2400-8. doi 10.3390/ijms20102408.

Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications. 2018;495(1):1-6. doi 10.1016/j.bbrc.2017.11.043.

Borde M, Dudhane M, Kulkarni M. Role of Arbuscular Mycorrhizal Fungi (AMF) in Salinity Tolerance and Growth Response in Plants Under Salt Stress Conditions. In: Varma A, Prasad R, Tuteja N, editors. Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Cham: Springer International Publishing; 2017. p. 71-86.

Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Frontiers in Plant Science. 2019;10. doi 10.3389/fpls.2019.00470.

Davino S, Caruso AG, Bertacca S, Barone S, Panno S. Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants. 2020;9(11):1615. doi 10.3390/plants9111615.

Hernández A, Pérez J, Bosch D, Castro N. Clasificación de los Suelos de Cuba 2015. Mayabeque, Cuba: Ediciones INCA; 2015. 91 p. Disponible en: http://ediciones.inca.edu.cu/index.php/ediciones

Paneque V. Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. La Habana: Instituto Nacional de Ciencias Agrícolas.; 2002. Disponible en: http://ediciones.inca.edu.cu/index.php/ediciones

Yao Q, Yang R, Long L, Zhu H. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environmental and Experimental Botany. 2013. doi 10.1016/j.envexpbot.2013.11.007.

Abdelhameed RE, Metwally RA. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International Journal of Phytoremediation. 2019;21(7):663-71. doi 10.1080/15226514.2018.1556584.

Wang Y, Wang M, Li Y, Wu A, Huang J. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE. 2018;13(4):1-14. doi 10.1371/journal.pone.0196408.

Chandrasekaran M, Boughattas S, Hu S, Oh S-H, Sa T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza. 2014;24(8):611-25. doi 10.1007/s00572-014-0582-7.

Plassard C, Becquer A, Garcia K. Phosphorus Transport in Mycorrhiza: How Far Are We? Trends Plant Sci. 2019;24(9):794-801. doi 10.1016/j.tplants.2019.06.004.

Romero-Munar A, Baraza E, Gulías J, Cabot C. Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed (Arundo donax L.) Plants Grown Under Low Phosphorus by Reducing Leaf Na+ Concentration and Improving Phosphorus Use Efficiency. Frontiers in Plant Science. 2019;10. doi 10.3389/fpls.2019.00843.

Plaut Z, Grieve CM, Maas EV. Salinity effects on CO2 assimilation and diffusive conductance of cowpea leaves. Physiologia Plantarum. 1990;79(1):31-8. doi 10.1111/j.1399-3054.1990.tb05862.x.

Iqbal S, Hussain S, Qayyaum MA, Ashraf M. The response of maize physiology under salinity stress and its coping strategies. Plant Stress Physiology. 2020:1-25. doi 10.5772/intechopen.88761.

Nawaz F, Shehzad MA, Majeed S, Ahmad KS, Aqib M, Usmani MM, et al. Role of mineral nutrition in improving drought and salinity tolerance in field crops. In: Hasanuzzaman M, editor. Agronomic Crops. 3. Singapore: Springer; 2020. p. 129-47. doi 10.1007/978-981-15-0025-1_8.

Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal R. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants. 2017;23(4):731-44. doi 10.1007/s12298-017-0462-7.

Hassan MU, Aamer M, Chattha MU, Ullah MA, Sulaman S, Nawaz M, et al. The role of potassium in plants under drought stress: Mini review. Journal of Basic and Applied Sciences. 2017;13:268-71. doi 10.6000/1927-5129.2017.13.44.

Dastogeer K, Zahan M, Tahjib-Ul-Arif M, Akter M, Okazaki S. Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis. Front Plant Sci. 2020;11:588550. doi 10.3389/fpls.2020.588550.