Physiological changes in bean (Phaseolus vulgaris L.) plants with irrigation reduced and foliar applications of PectiMorf®
Main Article Content
Abstract
The effect of foliar applications of PectiMorf® was studied in bean plants (Phaseolus vulgaris L.) cultivated under two irrigation variants. For this, 12 concrete containers were planted with the cultivar “Tomeguín 93”. The irrigation consisted of applying 100 and 50 % of the ETc (standard evapotranspiration of the crop) and the PectiMorf® foliar applications were 150 mg ha-1 at 20 and 35 days after sowing (DDS) giving rise to the following four treatments: T1-100 % ETc, considered as control treatment. T2- 100 % ETc + P (P = PectiMorf® application at 20 and 35 DAS) T3- 50 % ETc + P and T4- 50 % ETc, considered as stress treatment. Seven days after the PectiMorf® applications (28 and 43 DAS) were evaluated, the soil moisture content and different physiological indicators such as growht in dried biomass, leaf water potential (Ψf), actual osmotic potential (Ψs), osmotic potential at maximum turgor (Ψ100s) and stomatal conductance (gs). In addition, the water potential of the soil at the level of the soil-root interfaces (Ψr) and the contribution of dehydration to changes in potential osmotic ΔΨ ss were calculated. The results showed a positive effect of the foliar applications of PectiMorf® in the improvement of plants water status in both irrigation variants.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Raatz B, Mukankusi C, Lobaton JD, Male A, Chisale V, Amsalu B, et al. Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform: diversity, quality control and molecular breeding. Genetic Resources and Crop Evolution [Internet]. 2019 [cited 2024 Feb 20];66(3):707-22. doi:10.1007/s10722-019-00746-0
Beaver JS, González-Vélez A, Lorenzo-Vázquez G, Macchiavelli R, Porch TG, Estevez-de-Jensen C. Performance of Mesoamerican bean (Phaseolus vulgaris L.) lines in an unfertilized oxisol. Agronomía Mesoamericana [Internet]. 2021 [cited 2024 Feb 20];32(3):701-18. doi:10.15517/am.v32i3.44498
Karimzadeh Soureshjani H, Nezami A, Kafi M, Tadayon M. The Effect of Deficit Irrigation on Dry Matter Partitioning, Mobilization and Radiation Use Efficiency of Common Bean (Phaseolus Vulgaris L.). Communications in Soil Science and Plant Analysis [Internet]. 2020 [cited 2024 Feb 20];51(3):307-26. doi:10.1080/00103624.2019.1705323
González-Cueto O, Montaña-Valladares A, López-Bravo E, Sánchez-Valle S, Zambrano-Casanova DE, Macias-Martínez LM, et al. Productividad del agua de riego en cultivos seleccionados de la región central de Cuba. Revista Ciencias Técnicas Agropecuarias [Internet]. 2020 [cited 2024 Feb 20];29(1):56-63. Available from: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2071-00542020000100006&lng=es&nrm=iso&tlng=es
Winkler AJ, Dominguez-Nuñez JA, Aranaz I, Poza-Carrión C, Ramonell K, Somerville S, et al. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Marine Drugs [Internet]. 2017 [cited 2024 Feb 20];15(2):40. doi:10.3390/md15020040
Rouphael Y, Colla G. Editorial: Biostimulants in Agriculture. Frontiers in Plant Science [Internet]. 2020 [cited 2024 Feb 20];11(40):1-7. Available from: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.00040
Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture [Internet]. 2017 [cited 2024 Feb 20];4(1):5. doi:10.1186/s40538-017-0089-5
Santos MS, Nogueira MA, Hungria M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express. 2019;9(1):205. doi:10.1186/s13568-019-0932-0
Lara D, Ramírez M, Leija A, Costales D, Nápoles MC, Falcón-Rodríguez AB, et al. Effect of a mix of oligogalacturonides on symbiotic nitrogen fixation in common bean. Agronomía Colombiana [Internet]. 2021 [cited 2024 Feb 20];39(1):30-6. doi:10.15446/agron.colomb.v39n1.92081
Núñez-Vázquez M, Martínez-González L, Reyes-Guerrero Y. Oligogalacturónidos estimulan el crecimiento de plántulas de arroz cultivadas en medio salino. Cultivos Tropicales [Internet]. 2018 [cited 2024 Feb 20];39(2):96-100. Available from: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1451
Hernández-Jiménez A, Pérez-Jiménez JM, Bosch-Infante D, Speck NC. La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales [Internet]. 2019 [cited 2024 Feb 12];40(1):a15-e15. Available from: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1504
José M Dell ’Amico, Roberqui Martín Martin, Mompie EIJ, Donaldo Morales Guevara, Llerena RP. Physiological response of wheat (Triticum aestivum L.) cultivar INCA TH 4 to water deficit. Cultivos Tropicales. 2016 [cited 2024 Feb 20]; doi:10.13140/RG.2.1.4157.2080
Acosta DL, Menéndez DC, Rodríguez AF. Los oligogalacturónidos en el crecimiento y desarrollo de las plantas. Cultivos Tropicales [Internet]. 2018 [cited 2024 Feb 20];39(2):127-34. Available from: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1458
Lorente B, Zugasti I, Sánchez-Blanco MJ, Nicolás E, Ortuño MF. Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality. Plants [Internet]. 2021 [cited 2024 Feb 20];10(5):976. doi:10.3390/plants10050976
Veitía N, Martirena-Ramírez A, García LR, Collado R, Torres D, Rivero L, et al. Líneas de grano negro de Phaseolus vulgaris L. promisorias por respuesta a condiciones de estrés hídrico. Biotecnología Vegetal [Internet]. 2020 [cited 2024 Feb 20];20(1):17-22. Available from: https://revista.ibp.co.cu/index.php/BV/article/view/651
Montero-Tavera V, Gutiérrez-Benicio GM, Mireles-Arriaga AI, Aguirre-Mancilla CL, Acosta-Gallegos JA, Ruiz-Nieto JE, et al. Efectos fisiológicos del estrés hídrico en variedades de frijol tolerantes a la sequía. Acta universitaria [Internet]. 2019 [cited 2024 Feb 20];29. doi:10.15174/au.2019.1816
Estrada-Prado W, Chávez-Suárez L, Maceo-Ramos YC, Jerez-Mompie E, Nápoles-García MC. Efecto del Azofert®-F en la respuesta estomática del frijol ante el déficit hídrico1. Agronomía Mesoamericana [Internet]. 2021 [cited 2024 Feb 20];32(2):442-51. Available from: https://www.redalyc.org/journal/437/43766744007/html/