Spirulina extracts reverse the effects of simulated water deficit with PEG 6 000 in corn

Main Article Content

Lisbel Martínez González
Yanelis Reyes Guerrero
Miriam de la C. Núñez Vázquez
Geydi Pérez Domínguez
Donaldo Morales Guevara

Abstract

The water deficit delays the germination and initial growth of maize seedlings and the application of biostimulants can reverse this effect. The objective of this research was to determine the effects of two ethanolic extracts of spirulina (Arthrospira platensis) on the germination and initial growth of maize seedlings subjected to simulated water deficit with PEG 6 000. Two experiments were performed using cultivar P-7928. At the first one, desinfected seeds were placed to germinate, during seven days, in water, PEG 6 000 15 % and PEG 6 000 15 % supplemented with different concentrations (1, 0.5 and 0.1 µL mL-1) of two ethanolic extracts of spirulina (SpE 1 y SpE 2). At the end of experiment, final percentage of germination and some indicators of seedling growth were evaluated. In the second one, the best performing spirulina extract was used with the same concentrations proceeded in a similar way to the first experiment. The germination dynamics was followed every 12 hours and final percentage of germination (% G), germination velocity (GV), mean germination time (MGT), germination rate (GR) were calculated. Results showed that the imposed osmotic stress delayed germination but did not affect the final percentage and decreased significantly the shoot length. The addition of an ethanolic extract of spirulina (SpE 2) at 1.0 µL mL-1 concentration completely reversed the delay in germination imposed by PEG 6000 and generally stimulated the seedling growth.

Article Details

How to Cite
Martínez González, L., Reyes Guerrero, Y., Núñez Vázquez , M. de la C., Pérez Domínguez , G., & Morales Guevara, D. (2024). Spirulina extracts reverse the effects of simulated water deficit with PEG 6 000 in corn. Cultivos Tropicales, 45(4), https://cu-id.com/2050/v45n4e12. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1829
Section
Original Article

References

USDA. Maíz y soya: proyecciones para la campaña 2023/2024 USDA- julio 2023 Departamento de Agricultura de Estados Unidos (USDA)2023. Available from: https://www.3tres3.com/latam/ultima-hora/maiz-y-soya-proyecciones-para-la-campana-2023-2024-usda-%E2%80%93-julio-2023_15557/#:~:text=La%20producci%C3%B3n%20mundial%20de%20ma%C3%ADz,(1150%2C7%20Mt.

Ferro Valdés EM, Gigato Toledo A, Chirino González E, Ravelo Pimentel K, González Jiménez OL, Villareal Domínguez J. Determinación de las razas de maíz existentes en el municipio Viñales, Pinar del Río, Cuba, a través de descriptores morfoagronómicos. Revista ECOVIDA 2019; 9(1): 47-61. Available from: http://revistaecovida.upr.edu.cu/index.php/ecovida/article/view/149/html. .

ONEI. Oficina Nacional de Estadística e Información. Anuario Estadístico de Cuba 2021 : Capítulo 9 Agricultura, Ganadería, Silvicultura y Pesca. 2022: 16- 25.

Queiroz MS, Oliveira CES, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, et al. Drought Stresses on Seed Germination and Early Growth of Maize and Sorghum. Journal of Agricultural Science. 2019; 11(2). https://doi.org/10.5539/jas.v11n2p310.

Badr A, El-Shazly HH, Tarawneh RA, Börner A. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants. 2020; 9: 565. https://doi.org/10.3390/plants9050565.

López Fleites R, Gil Díaz V. Generalidades del Cultivo del Maíz: Editorial Feijóo; 2011. 64 p.

Mi N, Cai F, Zhang YS, Ji RP, Zhang SJ, Wang Y. Differential responses of maize yield to drought at vegetative and reproductive stages. Plant Soil Environ. 2018; 64: 260-7. https://doi.org/10.17221/141/2018-PSE.

Espinosa-Paz N, Martínez-Sánchez J, Ariza-Flores R, Cadena- Iñiguez P, Hernández-Maldonado M, Ramírez-Córdova AL. Germinacion de semillas de variedades criollas de maíz (Zea mays L.) bajo déficit hídrico. Agroproductividad. 2017; 10(9): 41-7. Available from: https://www.revista-agroproductividad.org/index.php/agroproductividad/article/download/189/150&ved=2ahUKEwit0K6p3LaGAxWd8MkDHbRXCvkQFnoECBQQAQ&usg=AOvVaw0UHu7i7B6R225Ia3UgNaKt.

Radic V, Balalic I, Cvejic S, Jocic S, Marjanovic-Jeromela A, Miladinovic D. Drougth Effect on maize seedling development. Ratar Povrt. 2018; 55(3): 135-8. https://doi.org/10.5937/ratpov55-19648.

Mendoza-Rodríguez MF, Veitía N, Martirena-Ramírez A, Rojas LE, Torres D, Hernández S, et al. Respuesta diferencial de tres cultivares de Phaseolus vulgaris L. al estrés hídrico in vitro inducido por PEG-6000. Biotecnología Vegetal. 2020; 20(4): 351 - 9. Available from: https://revista.ibp.co.cu/index.php/BV/article/download/684/pdf&ved=2ahUKEwiL6rXY3raGAxUD48kDHSkrDKMQFnoECBcQAQ&usg=AOvVaw1FZdhFqzsgA4QHdcoAsQ24.

Basal O, Szabó A, Veres S. Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology. 2020; 22: 100135. https://doi.org/10.1016/j.cpb.2020.100135.

Bello AS, Saadaoui I, Ben-Hamadou R. “Beyond the Source of Bioenergy”: Microalgae in Modern Agriculture as a Biostimulant, Biofertilizer, and Anti-Abiotic Stress. Agronomy. 2021; 11(1610). https://doi.org/10.3390/agronomy11081610.

Sivalingam KM. Isolation, identification and evaluation of Espirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. Journal of Algal Biomass Utilization. 2020; 11(2): 34-42. Available from: https://storage.unitedwebnetwork.com/files/521/4ca5cd59fe556a59877dcb110401ee19.pdf.

Rahim A, Çakir C, Ozturk M, Şahin B, Soulaimani A, Sibaoueih M, et al. Chemical characterization and nutritional value of Espirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South African Journal of Botany. 2021; 141: 235-42. https://doi.org/10.1016/j.sajb.2021.05.006.

Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, et al. The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste and Biomass Valorization. 2019; 10(5): 1101-10. https://doi.org/10.1007/s12649-017-0123-7.

Hamouda R, Shehawy M, Mohy El.Din S, Albalwe F, Albalawi H, Hussein M. Protective role of Espirulina platensis liquid extract against salinity stress effects on Triticum aestivum L. Green Processing and Synthesis. 2022; 11: 648-58. https://doi.org/10.1515/gps-2022-0065.

Zahedifar M, Zohrabi S. Germination and seedling characteristics of drought-stressed corn seed as influenced by seed priming with potassium nano-chelate and sulfate fertilizers. Acta agriculturae Slovenica. 2016; 107(1): 113-28. https://doi.org/10.14720/aas.2016.107.1.12.

Hernández-Herrera RM, Santacruz-Ruvalcaba F, Zanudo-Hernández J, Hernández Carmona G. Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology 2016; 28: 2549-60. https://doi.org/10.1007/s10811-015-0781-4.

Espinosa-Antón AA, Hernández-Herrera RM, González González M. Extractos bioactivos de algas marinas como bioestimulantes del crecimiento y la protección de las plantas. Biotecnología Vegetal. 2020; 20(4): 257-82. Available from: https://revista.ibp.co.cu/index.php/BV/article/view/677.

Michalak I, Górka B, Wieczorek PP, Rój E, Lipok J, Łęska B, et al. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology. 2016; 51(3): 243-52. https://doi.org/10.1080/09670262.2015.1134813.

Elnajar M, Aldesuquy H, Abdelmoteleb M, Eltanahy E. Mitigating drought stress in wheat plants (Triticum Aestivum L.) through grain priming in aqueous extract of Espirulina platensis. BMC Plant Biology. 2024; 24: 233 https://doi.org/10.1186/s12870-024-04905-z.

Alharbi K, Hafez EM, Omara AE-D, Osman HS. Mitigating Osmotic Stress and Enhancing Developmental Productivity Processes in Cotton through Integrative Use of Vermicompost and Cyanobacteria. Plants. 2023; 12(9): 1872. Available from: https://www.mdpi.com/2223-7747/12/9/1872.

Selem EE-S. Physiological effects of Espirulina platensis in salt stressed Vicia faba L. plants. Egypt J Bot Vol. 2019; 59(1): 185 - 94. https://doi.org/10.21608/ejbo.2018.3836.1178.

Fekri M, Gomah H, Eissa M. Growth Improvement of Sweet Basil (Ocimum basilicum L.) Irrigated with Saline Water Using Biochar and Espirulina Algae Extract. Assiut Journal of Agricultural Sciences. 2024; 55: 260-75. https://doi.org/10.21608/AJAS.2024.260394.1324.

Wu L, Zhang X, Ashraf U, Zhaowen M, Suo H, Li G. Dynamics of seed germination, seedlings growth and physiological responses of sweet corn under PEG-induced water stress. Pak J Bot. 2017; 49(2): 639-46. Available from: https://www.pakbs.org/pjbot/PDFs/49(2)/33.pdf.

Magar MM, Parajuli A, Sah BP, Shrestha J, Sakh BM, Koirala KB, et al. Effect of PEG Induced Drought Stress on Germination and Seedling Traits of Maize (Zea mays L.) Lines. Turkish Journal of Agricultural and Natural Sciencies. 2019; 6(2): 196-205. https://doi.org/10.30910/turkjans.432957.

Fathi A, Tari DB. Effect of drought stress and its mechanism in plants. Int J Life Sci (Kathmandu). 2016; 10(1): 1-6. http://dx.doi.org/10.3126/ijls.v10i1.14509.

Grzesik M, Romanowska-Duda Z. Improvements in Germination, Growth, and Metabolic Activity of Corn Seedlings by Grain Conditioning and Root Application with Cyanobacteria and Microalgae. Polish Journal of Environmental Studies. 2014; 23(4): 1147-53. Available from: https://www.pjoes.com/pdf-89291-23149%3Ffilename%3DImprovements%2520in.pdf.

Oliveira GE, Garcia Von Pinho R, de Andrade T, de Resende Von Pinho ÉV, dos Santos CD, Delly Veiga A. Physiological quality and amylase enzyme expression in maize seeds. Ciênc agrotec, Lavras. 2013; 37(1): 40-8. Available from: https://www.scielo.br/j/cagro/a/JJpGvzwnJkQ9Zx5JLQRN9xR/%3Flang%3Den.

Quang Thinh N. Influences of seed priming with Espirulina platensis extract on seed quality properties in black gram (Vigna mungo L.). Vietnam Journal of Science, Technology and Engineering. 2021; 63(1): 36-41. http://dx.doi.org/10.31276/VJSTE.63(1).36-41.

Krishna Moorthy S, Kassahun A, Dereje E, Tomas A. Isolation and Identification of Blue Green Algae and Its Plant Growth Promoting Efficacy using Red Kidney Beans (Phaseolus vulgaris L.) by Seed Germination Experiment. Journal of Algal Biomass Utilization. 2019; 10(2): 52-9. Available from: https://www.researchgate.net/publication/338460657_ISOLATION_AND_IDENTIFICATION_OF_CYANOBACTERIA_AND_ITS_IMPACT_ON_SEED_GERMINATION_POTENTIAL_OF_MAIZE_Zea_mays_L_USING_SEED_GERMINATION_EXPERIMENT.

Sivalingam K, Delfe K. Isolation and identification of cyanobacteria and its impact on seed germination potential of maize (Zea mays L.) using seed germination experiment. International Journal of Engineering Applied Sciences and Technology. 2019; 04: 65-72. http://dx.doi.org/10.33564/IJEAST.2019.v04i07.010.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>