Water deficit in crops and the action of microorganisms

Main Article Content

Arasay Santa Cruz-Suárez
María Caridad Nápoles-García
Donaldo Morales-Guevara

Abstract

One third of the planet's surface is considered arid or semi-arid, while most of the remaining surface is subject to temporary periods of water deficit. Drought is considered to be one of the world's major natural disasters, the most frequent and persistent, the one with the greatest negative effect on agricultural production and also the one that causes real adverse impacts on the environment. Water is the main limiting factor for plant growth on earth, acting as a first degree selective force for the evolution and distribution of plant species. Soil microorganisms are known to contribute a wide range of essential services to the sustainability of all ecosystems. They act as the main drivers of nutrient cycling; they regulate soil organic matter dynamics, carbon sequestration and greenhouse gas emissions; they modify soil physical structure and water regime. Inoculation of some microorganisms improves the efficiency of nutrient uptake, promotes plant growth and yield, thus attenuating the adverse effects of stress. The present work was aimed to deepen the knowledge of water deficit effects on crops and the role of some microorganisms in the mitigation of this stress on plants.

Article Details

How to Cite
Cruz-Suárez, A. S., Nápoles-García, M. C., & Morales-Guevara, D. (2023). Water deficit in crops and the action of microorganisms. Cultivos Tropicales, 43(3), https://cu-id.com/2050/v43n3e13. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1682
Section
Bibliographic Review

References

Turner NC, Begg JE. Plant-water relations and adaptation to stress. Plant and soil. 1981;58(1):97-131.

II G d’experts intergourvernemental sur l’évolution du climat WG, Change IP on C, I IP on CCWG, Staff IP on CC. Climate Change 2007 - Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC [Internet]. Cambridge University Press; 2007. 765 p. Available from: https://books.google.com.cu/books?hl=es&lr=&id=TNo-SeGpn7wC&oi=fnd&pg=PA81&dq=WMO-UNEP-+Climate+Change+2007:+Impacts,+Adaptation+and+vulnerability.+&ots=vR6AnfYvrA&sig=9EJ8YM6oqC-RFDXzOJxDZtUw84E&redir_esc=y#v=onepage&q=WMO-UNEP-%20Climate%20Change%202007%3A%20Impacts%2C%20Adaptation%20and%20vulnerability.&f=false

González LM, Estrada A, Zaldivar N, Argentel L. Tolerancia a la sequía en diferentes variedades de trigo sobre la base de algunas variables del régimen hídrico y la concentración de pigmentos en estadía de plántula. Revista Ciencias Técnicas Agropecuarias. 2007;16(1):45-9.

de la Casa A, Ovando G. Integración del Índice de Vegetación de la Diferencia Normalizada (NDVI) y del Ciclo Fenológico de Maíz para Estimar el Rendimiento a Escala Departamental en Córdoba, Argentina. Agricultura Técnica. 2007;67(4):362-71. doi:10.4067/S0365-28072007000400004

Kumar A, Verma JP. The role of microbes to improve crop productivity and soil health. In: Ecological wisdom inspired restoration engineering [Internet]. Springer; 2019. p. 249-65. Available from: https://link.springer.com/chapter/10.1007/978-981-13-0149-0_14

Gao J-P, Chao D-Y, Lin H-X. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice. Journal of Integrative Plant Biology. 2007;49(6):742-50. doi:https://doi.org/10.1111/j.1744-7909.2007.00495.x

Sans JF, Gil HM. Respuesta de las plantas al estrés hídrico. In: La ecofisiología vegetal : una ciencia de síntesis, 2003, ISBN 84-9732-267-3, págs. 253-286 [Internet]. Thomson-Paraninfo; 2003 [cited 28/02/2022]. p. 253-86. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=830199

Salisbury FBR, Cleon W. Fisiología de las plantas I Células: agua, soluciones y superficies/por Frank B. Salisbury y Cleon W. Ross.

Campbell GS, Norman JM. An Introduction to Environmental Biophysics [Internet]. Springer Science & Business Media; 1998. 224-225 p. Available from: https://books.google.es/books?hl=es&lr=&id=v6UpE6lThCwC&oi=fnd&pg=PR5&dq=Norman+JM.+Environmental+biophysics&ots=JXeeUIbnwW&sig=RuU6q1hj_lb2uT-yd7PBJB_L3RY#v=onepage&q=Norman%20JM.%20Environmental%20biophysics&f=false

Maliva R, Missimer T. Arid Lands Water Evaluation and Management [Internet]. Germany: Springer Science & Business Media; 2012. 1075 p. Available from: https://books.google.es/books?hl=es&lr=&id=Tx-gqLgdz0YC&oi=fnd&pg=PR5&dq=Aridity+and+drought.+En:+Arid+lands+w%C3%A1ter+evaluation+and+management,+environmetal+science+and+engineering.+Springer-Verlag+Berlin+Heidelberg,+Germany.+2012&ots=Z-Clq5xSPz&sig=WFuSMgwIxOSx4ijYAtcDG1FuCxw#v=onepage&q&f=false

Dubreucq B, Berger N, Vincent E, Boisson M, Pelletier G, Caboche M, et al. The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. The Plant Journal. 2000;23(5):643-52. doi:https://doi.org/10.1046/j.1365-313x.2000.00829.x

Levitt J. Responses of plants to environmental stresses. Physiological ecology. Academic Press, New York; 1980.

Nilsen ET, Orcutt DM. Physiology of plants under stress. Abiotic factors. John Willey and sons. Inc. 1996;333.

Medrano H, Bota J, Cifre J, Flexas J, Ribas-Carbó M, Gulías J. Eficiencia en el uso del agua por las plantas. Investigaciones geográficas (Esp). 2007;(43):63-84.

Morales CG, Pino MT, del Pozo A. Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae. 2013;162:234-41. doi:10.1016/j.scienta.2013.07.025

Ballester C, Castel J, Intrigliolo DS, Castel JR. Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agricultural Water Management. 2011;98(6):1027-32. doi:10.1016/j.agwat.2011.01.011

González LM, Argentel L, Zaldívar N, Ramírez R. Efecto de la sequía simulada con PEG-6000 sobre la germinación y el crecimiento de las plántulas de dos variedades de trigo. Cultivos tropicales. 2005;26(4):49-52.

Erice G, Louahlia S, Irigoyen JJ, Sánchez-Díaz M, Alami IT, Avice J-C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environmental and Experimental Botany. 2011;72(2):123-30. doi:10.1016/j.envexpbot.2011.02.013

Coombs J, Hall DO, Long SP, Scurlock JMO. Tecnicas en fotosintesis y bioproductividad. eds. UNEP, CP. Chapingo, México; 1988 p. 42-51.

Erice G, Irigoyen JJ, Sánchez-Díaz M, Avice J-C, Ourry A. Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Science. 2007;172(5):903-12. doi:10.1016/j.plantsci.2006.12.013

Quiñones A, Martínez-Alcántara B, Legaz F. Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agriculture, Ecosystems & Environment. 2007;122(3):399-409. doi:10.1016/j.agee.2007.02.004

Ferreyra E. R, Sellés V. G, Ruiz S. R, Sellés M. I. Efecto del estrés hídrico aplicado en distintos periodos de desarrollo de la vid cv. chardonnay en la producción y calidad del vino. Agricultura Técnica. 2003;63(3):277-86. doi:10.4067/S0365-28072003000300007

Álvarez S, Navarro A, Bañón S, Sánchez-Blanco MJ. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Horticulturae. 2009;122(4):579-85. doi:10.1016/j.scienta.2009.06.030

Ball RA, Oosterhuis DM, Mauromoustakos A. Growth Dynamics of the Cotton Plant during Water-Deficit Stress. Agronomy Journal. 1994;86(5):788-95. doi:https://doi.org/10.2134/agronj1994.00021962008600050008x

Siopongco JD, Yamauchi A, Salekdeh H, Bennett J, Wade LJ. Growth and Water Use Response of Doubled-Haploid Rice Linesto Drought and Rewatering during the Vegetative Stage. Plant Production Science. 2006;9(2):141-51. doi:10.1626/pps.9.141

Kumar A, Singh DP, Singh P. Influence of water stress on photosynthesis, transpiration, water-use efficiency and yield of Brassica juncea L. Field Crops Research. 1994;37(2):95-101. doi:10.1016/0378-4290(94)90037-X

Gerik TJ, Faver KL, Thaxton PM, El-Zik KM. Late Season Water Stress in Cotton: I. Plant Growth, Water Use, and Yield. Crop Science. 1996;36(4):cropsci1996.0011183X003600040017x. doi:https://doi.org/10.2135/cropsci1996.0011183X003600040017x

Garzón Correa DL, Vélez-Sánchez JE, Orduz Rodríguez JO. Efecto del déficit hídrico en el crecimiento y desarrollo de frutos de naranja Valencia (Citrus sinensis Osbeck) en el piedemonte del Meta, Colombia. Acta Agronómica. 2013;62(2):136-47.

Wullschleger SD, Oosterhuis DM. Photosynthetic Carbon Production and Use by Developing Cotton Leaves and Bolls. Crop Science. 1990;30(6):1259-61. doi:https://doi.org/10.2135/cropsci1990.0011183X003000060021x

Crafts-Brandner SJ, Poneleit CG. Selection for Seed Growth Characteristics: Effect on Leaf Senescence in Maize. Crop Science. 1992;32(1):127-31. doi:https://doi.org/10.2135/cropsci1992.0011183X003200010028x

Jordan WR. Whole Plant Response to Water Deficits: An Overview. In: Limitations to Efficient Water Use in Crop Production [Internet]. John Wiley & Sons, Ltd; 1983 [cited 18/04/2022]. p. 289-317. doi:10.2134/1983.limitationstoefficientwateruse.c18

Mellisho CD, Egea I, Galindo A, Rodríguez P, Rodríguez J, Conejero W, et al. Pomegranate Punica granatum L.) fruit response to different deficit irrigation conditions. Agricultural Water Management. 2012;114:30-6. doi:10.1016/j.agwat.2012.06.010

Whitmore AP, Whalley WR. Physical effects of soil drying on roots and crop growth. Journal of Experimental Botany. 2009;60(10):2845-57. doi:10.1093/jxb/erp200

Larcher W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer Science & Business Media; 2003. 540 p.

Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, et al. Estrés hídrico: ecofisiología y escalas de la sequía. In Madrid: Ministerio de Medio Ambiente; 2004. Available from: www.irnase.csic.es/users/jefer/pdf/Valladares%20F.doc

Lelièvre F, Seddaiu G, Ledda L, Porqueddu C, Volaire F. Water use efficiency and drought survival in Mediterranean perennial forage grasses. Field Crops Research. 2011;121(3):333-42. doi:10.1016/j.fcr.2010.12.023

Moreno F. LP. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomía Colombiana. 2009;27(2):179-91.

Kozlowski TT, Kramer PJ, Pallardy SG. The Physiological Ecology of Woody Plants [Internet]. Academic Press; 1991. 678 p. Available from: https://books.google.es/books?hl=es&lr=&id=iSTOcsNbVxMC&oi=fnd&pg=PP1&dq=The+physiological+ecology+of+woody+plants.+Academic+Press.&ots=zP86EJN18B&sig=11deEoDix0YktiZj8dtNpjpVGKg#v=onepage&q=The%20physiological%20ecology%20of%20woody%20plants.%20Academic%20Press.&f=false

Hoekstra FA, Golovina EA, Buitink J. Mechanisms of plant desiccation tolerance. Trends in Plant Science. 2001;6(9):431-8. doi:10.1016/S1360-1385(01)02052-0

Bhatnagar-Mathur P, Vadez V, Sharma KK. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports. 2008;27(3):411-24. doi:10.1007/s00299-007-0474-9

Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology. 2004;161(11):1189-202. doi:10.1016/j.jplph.2004.01.013

Schachtman DP, Goodger JQD. Chemical root to shoot signaling under drought. Trends in Plant Science. 2008;13(6):281-7. doi:10.1016/j.tplants.2008.04.003

Sharp RE, LeNoble ME. ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany. 2002;53(366):33-7. doi:10.1093/jexbot/53.366.33

Yu Z, Chen W, Zhang Q, Yang H, Tang J, Weiner J, et al. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects. Acta Oecologica. 2014;58:1-4. doi:10.1016/j.actao.2014.04.001

Mak M, Babla M, Xu S-C, O’Carrigan A, Liu X-H, Gong Y-M, et al. Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany. 2014;98:1-12. doi:10.1016/j.envexpbot.2013.10.003

Sánchez-Díaz M, Aguirreolea J. Movimientos estomáticos y transpiración. Azcon-Bieto, J. y M. Talon. Fundamentos de fisiología vegetal. 1a ed. Ed. McGraw-Hill/Interamericana de España, Madrid. 2000;31-43.

Taiz L, Zeiger E, Møller IM, Murphy A. Plant physiology and development. [Internet]. Sinauer; 2015 [cited 25/04/2022]. 733-734 p. Available from: https://www.cabdirect.org/cabdirect/abstract/20173165866

Wu Y, Huang M, Warrington DN. Growth and transpiration of maize and winter wheat in response to water deficits in pots and plots. Environmental and Experimental Botany. 2011;71(1):65-71. doi:10.1016/j.envexpbot.2010.10.015

Mota F da. Meteorologia agrícola. Nobel São Paulo; 1983.

Langridge P, Paltridge N, Fincher G. Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics. 2006;4(4):343-54. doi:10.1093/bfgp/eli005

Sivakumar MVK, Shaw RH. Relative Evaluation of Water Stress Indicators for Soybeans1. Agronomy Journal. 1978;70(4):619-23. doi:https://doi.org/10.2134/agronj1978.00021962007000040022x

Carlesso R. Influence of soil water deficits on maize growth and leaf area adjustments. Michigan State University; 1993.

Horner JD. Nonlinear effects of water deficits on foliar tannin concentration. Biochemical Systematics and Ecology. 1990;18(4):211-3. doi:10.1016/0305-1978(90)90062-K

Lugtenberg BJ, Malfanova N, Kamilova F, Berg G. Plant growth promotion by microbes. Molecular microbial ecology of the rhizosphere. 2013;2:561-73.

Vimal SR, Singh JS, Arora NK, Singh S. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review. Pedosphere. 2017;27(2):177-92. doi:10.1016/S1002-0160(17)60309-6

Santana SRA, Voltolini TV, Antunes G dos R, da Silva VM, Simões WL, Morgante CV, et al. Inoculation of plant growth-promoting bacteria attenuates the negative effects of drought on sorghum. Archives of Microbiology. 2020;202(5):1015-24. doi:10.1007/s00203-020-01810-5

Puente ML, Zawoznik M, de Sabando ML, Perez G, Gualpa JL, Carletti SM, et al. Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39. Symbiosis. 2019;77(1):41-7. doi:10.1007/s13199-018-0568-x

Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, et al. Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Frontiers in Microbiology. 2019;0:1-9. doi:10.3389/fmicb.2019.02106

Barra PJ, Inostroza NG, Mora ML, Crowley DE, Jorquera MA. Bacterial consortia inoculation mitigates the water shortage and salt stress in an avocado Persea americana Mill.) nursery. Applied Soil Ecology. 2017;111:39-47. doi:10.1016/j.apsoil.2016.11.012

Loredo-Osti C, López-Reyes L, Espinosa-Victoria D. Bacterias promotoras del crecimiento vegetal asociadas con gramíneas: Una revisión. Terra Latinoamericana. 2004;22(2):225-39.

Peñin López A. Rizobacterias promotoras del crecimiento vegetal [Internet]. de la Laguna; 2017. Available from: https://riull.ull.es/xmlui/bitstream/handle/915/5766/Rizobacterias+promotoras+del+crecimiento+vegetal.pdf?sequence=1

Murcia Linares A, Bustos SC. Efecto de la inoculación de bacterias promotoras del crecimiento vegetal en maracuyá y badea cultivadas en condiciones de estrés hídrico. Biología [Internet]. 2017; Available from: https://ciencia.lasalle.edu.co/biologia/14

Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research. 2016;184:13-24. doi:10.1016/j.micres.2015.12.003

Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Frontiers in Plant Science. 2014;5:1-11. doi:10.3389/fpls.2014.00640

Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research. 2008;163(2):173-81. doi:10.1016/j.micres.2006.04.001

Yang J, Kloepper JW, Ryu C-M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science. 2009;14(1):1-4. doi:10.1016/j.tplants.2008.10.004

Mangmang J, Deaker R, Rogers G. Germination Characteristics of Cucumber Influenced by Plant Growth-promoting Rhizobacteria: International Journal of Vegetable Science. 22(1):66-75.

Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation. 2014;73(2):121-31. doi:10.1007/s10725-013-9874-8

Vanderlinde EM, Harrison JJ, Muszyński A, Carlson RW, Turner RJ, Yost CK. Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiology Ecology. 2010;71(3):327-40. doi:10.1111/j.1574-6941.2009.00824.x

Smith SE, Read DJ. Mycorrhizal Symbiosis. Academic Press; 2010. 815 p.

Augé RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11(1):3-42. doi:10.1007/s005720100097

Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza. 2003;13(6):309-17. doi:10.1007/s00572-003-0237-6

Augé RM. Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science. 2004;84:373-81. doi:10.4141/S04-002

Azcón R, Barea JoséM. Mycorrhizal dependency of a representative plant species in mediterranean shrublands Lavandula spica L.) as a key factor to its use for revegetation strategies in desertification-threatened areas. Applied Soil Ecology. 1997;7(1):83-92. doi:10.1016/S0929-1393(97)00013-9

Amerian MR, Stewart WS, Griffiths H. Effect of two species of arbuscular mycorrhizal fungi on growth, assimilation and leaf water relations in maize Zea mays). Aspects of Applied Biology. 2001;63:71-6.

Most read articles by the same author(s)

1 2 > >>