Efecto de extractos de algas en la producción de frijol (Phaseolus vulgaris L.)
Contenido principal del artículo
Resumen
En los últimos años, la producción de frijol en Cuba ha venido decreciendo; por lo que el reto actual de los productores es lograr incrementarla usando tecnologías amigables con el medio ambiente. Por esta razón, el objetivo del presente trabajo fue determinar el efecto que las aplicaciones con extractos de algas ejercen en la producción de granos del frijol. Para esto, se ejecutó un experimento en el Área Central del INCA (Instituto Nacional de Ciencias Agrícolas), donde se utilizaron semillas de dos líneas de frijol que están en fase de registro, una de granos de color rojo (C-8) y la otra de granos de color blanco (C-13), las cuales se sembraron el 22 de enero de 2023. Se efectuaron tres aspersiones foliares (25, 39 y 53 días después de la siembra); en el caso de la línea C-8 se evaluaron tres tratamientos: 1) control, 2) dos aspersiones con extracto de espirulina 20 mg ha-1 y una con extracto de sargazo 2 % y 3) dos aspersiones con extracto de espirulina 40 mg ha-1 y otra con 20 mg ha-1. En la línea C-13 se evaluó el efecto de tres aspersiones con extracto de sargazo, la primera con 0,3 % y las otras dos con 2 %. Los resultados demostraron que dos aspersiones foliares con extracto de espirulina 20 mg ha-1 y una con extracto de sargazo 2 %; así como tres aspersiones foliares con extracto de sargazo fueron efectivas, incrementando la masa de granos de las líneas C-8 y C-13 en 30 y 48,6 %, respectivamente.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Citas
Morales-Soto A, Lamz-Piedra A. Métodos de mejora genética en el cultivo del frijol común (Phaseolus vulgaris L.) frente al Virus del Mosaico Dorado Amarillo del Frijol (BGYMV). Cultivos Tropicales. 2020; 41(4):e10
ONEI, Oficina Nacional de Estadísticas e Información. Agricultura, ganadería, silvicultura y pesca. In: Anuario Estadístico de Cuba 2021. Capítulo 9; Edición 2022.p 4-35. http://www.onei.cu
El Boukhari ME-M, Barakate M, Bouhia Y, Lyamlouli K. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants. 2020; 9(359):1-23. doi: https://doi.org/10.3390/plants9030359
Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 2018; 9:1782. doi: https://doi.org/10.3389/fpls.2018.01782
Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 2018; 30:1061-72. doi: 10.1007/s10811-017-1283-3
Godlewska K, Michalak I, Pacyga P, Baśladyńska S, Chojnacka K. Potential applications of cyanobacteria: Spirulina platensis fltrates and homogenates in agriculture. World Journal of Microbiology and Biotechnology. 2019; 35:80 https://doi.org/10.1007/s11274-019-2653-6
Vasantharaja R, Abraham LS, Inbakandan D, Thirugnanasambandam R, Senthilvelan T, Ayesha Jabeen SK et al. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatalysis and Agricultural Biotechnology.2019; 17: 589-94. https://doi.org/10.1016/j.bcab.2019.01.021
Kaladharan P, Subramannian S, Anjelo P, Thulasidharan A, Vysakhan P. Mulching brown seaweed Sargassum wightii during transplant on the growth and yield of paddy. Journal of the Marine Biological Association of India 2021; 63(1):117-21. doi:10.6024/jmbai.2021.63.1.2244-17
Sharma S, Chen C, Khatri K, Rathore MS, Pandey SP. Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. Plant Physiology and Biochemistry. 2019;136: 143-54. doi: 10.1016/j.plaphy.2019.01.015
Hamed SM, El-Rhman AA, Abdel-Raouf N, Ibraheem IBM. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. BeniSuef University Journal of Basic and Applied Sciences. 2018; 7:104-10. doi: 10.1016/j.bjbas.2017.08.002
Arencibia-Carballo G, Irañeta-Batallán JM, Morell J, Moreira-González AR. Arribazones de Sargassum en la costa norte occidental de Cuba. JAINA Costas y Mares ante el Cambio Climático. 2020; 2(1):19-30. doi 10.26359/52462.0220.
Akgül F. Effect of Spirulina platensis (Gomont) Geitler extract on seed germination of wheat and barley. Alinteri Journal of Agriculture Sciences. 2019; 34(2):148-53. doi: https://doi.org/10.28955/alinterizbd.639000
Sivalingam KM. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L), Wolaita Sodo, Southern Ethiopia. J. Algal Biomass Utilization. 2020;11(2):34-42.
Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman MEH. Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus. Agriculture.2022; 12:781. https://doi.org/10.3390/agriculture12060781
Abreu AP, Martins R, Nunes J. Emerging applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering.2023; 10:955. https://doi.org/10.3390/bioengineering10080955
Seğmen E, Ünlü HÖ. Effects of foliar applications of commercial seaweed and spirulina platensis extracts on yield and fruit quality in pepper (Capsicum annuum L.). Cogent Food & Agriculture. 2023; 9: 2233733. https://doi.org/10.1080/23311932.2023.2233733
Hamouda RA, Shehawy MA, El Din SMM, Albalwe FM, Albalawi HMR, Hussein MH. Protective role of Spirulina platensis liquid extract against salinity stress effects on Triticum aestivumL. Green Processing and Synthesis. 2022; 11:648-58. https://doi.org/10.1515/gps-2022-0065
Rady MM, Elrys AS, Selem E, Mohsen AAA, Arnaout SMAI, El-Sappah AH et al. Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil. Journal of Environmental Sciences. 2023; 129: 240-57. https://doi.org/10.1016/j.jes.2022.09.011
Mostafa MM, Hammad DM, Reda MM, El-Sayed AE-KB. Water extracts of Spirulina platensis and Chlorella vulgaris enhance tomato (Solanum lycopersicum L.) tolerance against saline water irrigation. Biomass Conversion and Biorefinery. Published online: 27 June 2023. https://doi.org/10.1007/s13399-023-04460-x
López-Padrón I, Martínez-González L, Pérez-Domínguez G, Reyes-Guerrero Y, Núñez-Vázquez M, Cabrera-Rodríguez JA. Las algas y sus usos en la agricultura. Una visión actualizada. Cultivos Tropicales, 2020; 41(2):e10.
Hernández Jiménez A, Pérez Jiménez JM, Bosch Infante D, Castro Speck N. La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales. 2019; 40(1):a15-e15
Faure Alvarez B, Benítez González R, Rodríguez Acosta E, Grande Morales O, Torres Martínez M, Pérez Rodríguez P. Guía técnica para la producción de frijol común y maíz. La Habana, Cuba; 2014 p. 34
Izquierdo Martínez M, Santana Baños Y, García Cabañas A, Carrodeguas Díaz S, Aguiar González I, Ruiz Sánchez M et al. Respuesta agronómica de cinco cultivares de frijol común en un agroecosistema del municipio Consolación del Sur. Centro Agrícola. 2018; 45(3):11-6. http://cagricola.uclv.edu.cu
Ortíz R. Sistema formal e informal de semillas: Nuevos horizontes. In: Ortíz R, Miranda S, Martínez C, Ríos H, Cárdenas RM, editors. La biodiversidad agrícola en manos del campesinado cubano. Ediciones INCA, Mayabeque, Cuba, 2013. ISBN 978-959-7023-63-0
Leyva RM, García E, Chaveco O, Permuy N, Bruzón Y. Producción agroecológica del frijol común (Phaseolus vulgaris L.). Colección Aprender e Innovar. Lueiro M, editor. UEICA-H. Holguín. 2020. ISBN 979-959-234-147-0
Lamz-Piedra A, Morales-Soto A, Peteira Delgado-Oramas B, Florido-Bacallao M. Caracterización de 11líneas de frijol común (Phaseolus vulgaris L.) resistentes a Zabrotes subfasciatus Boheman en Cuba. CienciaUAT. 2023; 18(1):178-90 https://doi.org/10.29059/cienciauat.v18i1.1680
Renaut S, Masse J, Norrie JP, Blal B, Hijri M. A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microbial Biotechnology. 2019; 12(6):1346-58. doi: 10.1111/17517915.13473
Solomon W, Mutum L, Janda T, Molnár Z. Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regulation. 2023; 101:53-65 https://doi.org/10.1007/s10725-023-01019-8
Begum M, Bordoloi BC, Singha DD, Ojha NJ. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Reviews. 2018; 39 (4):321-6. doi: 10.18805/ag.R-1838
Ali O, Ramsubhag A, Jayaraman J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants.2021; 10:531 https://doi.org/10.3390/plants10030531.
Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA et al. Algae as Bio-fertilizers: Between current situation and futureprospective. Saudi Journal of Biological Sciences. 2022;29: 3083-96. https://doi.org/10.1016/j.sjbs.2022.03.020
Ramakrishnan B, Maddela NR, Venkateswarlu K, Megharaj M. Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view. Environ. Sci.: Adv.2023; 2:586-611. doi: 10.1039/D2VA00158
Thinh NQ. Influences of seed priming with Spirulina platensis extract on seed quality properties in black gram (Vigna mungo L.). Vietnam Journal of Science, Technology and Engineering. 2021; 63(1):36-41. doi: 10.31276/VJSTE.63(1).36-41
Bharath B, Nirmalraj S, Mahendrakumar M, Perinbam K. Biofertilizing efficiency of Sargassum polycystum extract on growth and biochemical composition of Vigna radiata and Vigna mungo. Asian Pacific Journal of Reproduction. 2018; 7(1):27-32. doi:10.4103/2305-0500.220982
Vijayarasa K, Somasundaram S, Shanmugalingam S. Effects of natural and commercially available seaweed liquid extracts on growth and yield of Vigna unguiculata L. Asian J. Biol. Sci.2019;12:487-91.doi: 10.3923/ajbs.2019.487.491
Radjassegarin A, Perumal A. Synergetic effects of seaweed extract and Rhizobium on cowpea. Natr. Resour. Human Health. 2021; 1(1):43-50. https://doi.org/10.53365/nrfhh/141292
Abu Seif YI, El-Miniawy SE-DM, Abu El-Azm NAI, Hegazi AZ. Response of snap bean growth and seed yield to seed size, plant density and foliar application with algae extract. Annals of Agricultural Science. 2016; 61(2):187-99. http://dx.doi.org/10.1016/j.aoas.2016.09.001
VijayanandN, Ramya SS, Rathinavel S. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pacific Journal of Reproduction 2014; 3(2):150-5. doi: 10.1016/S2305-0500(14)60019-1
Rashwan RS, Hammad DM. Toxic effect of Spirulina platensis and Sargassum vulgare as natural pesticides on survival and biological characteristics of cotton leaf worm Spodoptera littoralis. Scientifific African 2020; 8:e00323 https://doi.org/10.1016/j.sciaf.2020.e00323
Kumar A, Ramamoorthy D, Verma DK, Kumar A, Kumar N, Kanak KR et al. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus. 2022; 6:100070. https://doi.org/10.1016/j.nexus.2022.100070