Effect of bioproducts combination on root growth of Phaseolus vulgaris L.

Main Article Content

Danurys Lara-Acosta
Daimy Costales-Menéndez
María C Nápoles-García
Alejandro Falcón-Rodríguez

Abstract

The common bean (Phaseolus vulgaris L.) is one of the most important edible legumes because it is an important nutritional supplement in the diet. Its production is limited because of drastic changes in meteorological variables and soil nutrient deficiencies. An alternative to this problem could be the use of biostimulants that improve the root system development and allow plants to adapt to unfavorable environments. In the present study, the effect of two bioproducts, Azofert®-F and Pectimorf®, on the root development of common bean in early stages of vegetative growth was evaluated. Cuba Cueto-25-9-N bean seeds were treated with a mixture of the biostimulants Azofert®-F (at the recommended dose) and Pectimorf® at different concentrations (1, 5, 10, 20, 40 and 100 mg L-1). At 96 hours after seed germination, the number of lateral roots, root length and root dry mass were determined. The application of biostimulants increased the number of lateral roots by more than 22 % when the mixture contained 100 mg L-1 of Pectimorf®. No effect of products evaluated was observed on root length and root dry mass variables. The positive effect of the biostimulants Azofert®-F and Pectimorf® on the formation of lateral roots in early stages of vegetative growth could guarantee a better utilization of soil nutrients, which contributes to better plant development and higher crop productivity.

Article Details

How to Cite
Lara-Acosta, D., Costales-Menéndez, D., Nápoles-García, M. C., & Falcón-Rodríguez, A. (2023). Effect of bioproducts combination on root growth of Phaseolus vulgaris L. Cultivos Tropicales, 43(3), https://cu-id.com/2050/v43n3e10. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1679
Section
Original Article

References

Polania J, Poschenrieder C, Rao I, Beebe S. Estimation of phenotypic variability in symbiotic nitrogen fixation ability of common bean under drought stress using 15N natural abundance in grain. European Journal of Agronomy. 2016;79:66-73. doi:10.1016/j.eja.2016.05.014

Faure B, Benítez R, García A, Ortega L. Manual para la producción sostenible del frijol común. Artemisa, Cuba. Instituto de Investigaciones de Granos. 2017;

Lara-Acosta D, Costales-Menéndez D, Nápoles-García MC, Falcón-Rodríguez A. Pectimorf® y Azofert-F® en el crecimiento de plantas de frijol (Phaseolus vulgaris L.). Cultivos Tropicales. 2019;40(4):e5.

Cabrera JC, Wégria G, Onderwater RCA, González G, Nápoles MC, Falcón-Rodríguez AB, et al. Practical use of oligosaccharins in agriculture. In: Acta Horticulturae [Internet]. 2013 [cited 26/04/2022]. p. 195-212. doi:10.17660/ActaHortic.2013.1009.24

Ramos Hernández L, Arozarena Daza NJ, Lescaille Acosta J, García Cisneros F, Tamayo Aguilar Y, Castañeda Hidalgo E, et al. Dosis de Pectimorf® para enraizamiento de esquejes de guayaba var. Enana Roja Cubana. Revista mexicana de ciencias agrícolas. 2013;4(SPE6):1093-105.

García MB, Avalos DMR, Acosta JMZ, Batista RD. Efecto de Pectimorf® en el enraizamiento in vitro de plantas de ‘FHIA-18’ ( Musa AAAB). Biotecnología Vegetal [Internet]. 2015 [cited 26/04/2022];15(4). Available from: https://revista.ibp.co.cu/index.php/BV/article/view/500

Nápoles MC, Gutiérrez A, Corbera J. Medio de cultivo para B. japonicum. Biopreparado resultante. Patente Cubana. 2002;(22):797.

Cabrera JC, Gómez R, Diosdado E, Hormaza JV, Iglesias R, Gutiérrez A, et al. Procedimiento de obtención de una mezcla de oligosacáridos pécticos estimuladora del enraizamiento vegetal. Patente Cubana. 2003;22859.

Ramírez M, Guillén G, Fuentes SI, Iñiguez LP, Aparicio-Fabre R, Zamorano-Sánchez D, et al. Transcript profiling of common bean nodules subjected to oxidative stress. Physiologia Plantarum. 2013;149(3):389-407.

Izquierdo H, Diosdado E, González Cepero MC, Núñez M de la C, Cabrera JC, Hernández RM, et al. Contributions to knowledge of the functioning of national bioestimulators in plant biotechnology processes. Biotecnología Aplicada. 2016;33(3):3511-6.

Borges-García M, González-Paneque O, Reyes-Avalos DM, Rodríguez-González M, Villavicencio-Ramírez A, Abeal EE-. Respuesta de plantas in vitro de ñame clon ‘Blanco de Guinea’ al uso del Pectimorf®. Cultivos Tropicales. 2017;38(2):129-36.

Xu P, Zhao P-X, Cai X-T, Mao J-L, Miao Z-Q, Xiang C-B. Integration of jasmonic acid and ethylene into auxin signaling in root development. Frontiers in Plant Science [Internet]. 2020 [cited 26/04/2022];11(271). doi:10.3389/fpls.2020.00271

Bensmihen S. Hormonal control of lateral root and nodule development in legumes. Plants. 2015;4(3):523-47.

Fundora LB, Ortiz RMH, Salces ED, Román MI, Arencibia CG, Álvarez AR, et al. Embriogénesis somática de Citrus macrophylla Wester con el empleo del Pectimorf® y análogos de brasinoesteroides. Revista Colombiana de Biotecnología. 2013;15(1):189-94.

Lara D. Efecto de una mezcla de oligogalacturónidos en la interacción Rhizobium-Phaseolus vulgaris L. [Internet] [Maestría]. [La Habana, Cuba]: Universidad de La Habana; 2021 [cited 26/04/2022]. 65 p. Available from: https://www.google.com/search?q=Efecto+de+una+mezcla+de+oligogalactur%C3%B3nidos+en+la+interacci%C3%B3n+Rhizobium-Phaseolus+vulgaris+L.+&client=firefox-b-d&sxsrf=APq-WBukBas1FKE6vR8n3hHjgRGvfLiC1w%3A1650987835541&ei=OxNoYsbcIMCZwbkP37uJ8A0&ved=0ahUKEwiG5tz7iLL3AhXATDABHd9dAt4Q4dUDCA0&uact=5&oq=Efecto+de+una+mezcla+de+oligogalactur%C3%B3nidos+en+la+interacci%C3%B3n+Rhizobium-Phaseolus+vulgaris+L.+&gs_lcp=Cgdnd3Mtd2l6EAMyBAgjECc6CggjEK4CELADECdKBAhBGAFKBAhGGABQrBJYrBJguxtoA3AAeACAAZgBiAGYAZIBAzAuMZgBAKABAqABAcgBAcABAQ&sclient=gws-wiz

Miguel MA, Widrig A, Vieira RF, Brown KM, Lynch JP. Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). Annals of Botany. 2013;112(6):973-82.

Ndour A, Vadez V, Pradal C, Lucas M. Virtual plants need water too: functional-structural root system models in the context of drought tolerance breeding. Frontiers in Plant Science. 2017;8:1577.

Ye H, Roorkiwal M, Valliyodan B, Zhou L, Chen P, Varshney RK, et al. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany. 2018;69(13):3267-77.

Miranda Domínguez LE, López Castañeda C, Benítez Riquelme I, Mejía Contreras JA. Desarrollo radical y rendimiento en diferentes variedades de trigo, cebada y triticale bajo condiciones limitantes de humedad del suelo. Terra Latinoamericana. 2016;34(4):393-407.

Martirena-Ramírez A, Veitía N, Torres D, Rivero L, García LR, Collado R, et al. Longitud de la raíz: indicador morfológico de la respuesta al estrés hídrico en Phaseolus vulgaris. L. en casa de cultivo. Biotecnología Vegetal. 2019;19(3):225-33.

Estrada Prado W, Chávez Suárez L, Jerez Mompie E, Nápoles García MC, Sosa Rodríguez A, Cordoví Dominguez C, et al. Efecto del Azofert® en el rendimiento de variedades de frijol común (Phaseolus vulgaris L.) en condiciones de déficit hídrico. Centro Agrícola. 2017;44(3):36-42.

Dell’Amico J, Morales D, Jerez E, Rodríguez P, Álvarez I, Martín R, et al. Efecto de dos variantes de riego y aplicaciones foliares de pectimorf® en el desarrollo del frijol (Phaseolus vulgaris L.). Cultivos Tropicales. 2017;38(3):129-34.

Núñez-Vázquez M, Martínez-González L, Reyes-Guerrero Y. Oligogalacturónidos estimulan el crecimiento de plántulas de arroz cultivadas en medio salino. Cultivos Tropicales. 2018;39(2):96-100. doi:10.1234/ct.v39i2.1451

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)