Trait association in advanced rice lines treated with Biobras-16® and QuitoMax®
Main Article Content
Abstract
This study was carried out at the farm of producer Rodolfo Miranda in Los Palacios municipality with the objective of seeking a relationship between yield, its components and other traits in rice genotypes treated with the biostimulants Biobras-16® and QuitoMax®. A completely randomized design was used with eighteen treatments (a control without application and independent applications of Biobras-16® and QuitoMax®) and three replicates each, and six quantitative traits were evaluated. The data matrix obtained was processed by means of Multivariate Principal Component Analysis, Multiple Linear Regression and Pearson correlations. The results revealed that most of the variables evaluated showed correlations, except full grains per panicle that was not interrelated with any other trait. The Principal Component analysis explained 74 % of the total variance, all the original variables contributed to the first component, except full and vain grains per panicle that contributed to the second component. Groups I and II included the cultivar INCA LP-7 and Line 4 in combination with the products under study and Line 3 with Biobras-16®. They were characterized by having the highest values for all traits, except vain grains per panicle, and the model proposed by the multiple linear regression analysis explained more than 85 % of the variability in yield, being an optimal predictor of this trait for studies under similar conditions.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Calero A, Pérez Y, González Y, Yanes LA, Olivera D, Peña K, et al. Respuesta agronómica y productiva de ocho variedades de arroz bajo condiciones de manejo agroecológico. Revista de la Facultad de Ciencias. Universidad Nacional de Colombia. 2020;9(2):43–55. doi: 10.15446/rev.fac.cienc.v9n2.84629.
Calero A, Pérez Y, Quintero E, González Y. Densidades de plantas adecuadas para incrementar el rendimiento agrícola del arroz. Centro Agrícola. 2021;48(1):28-36. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852021000100028&lng=es&tlng=es.
Torres JA, Reyes JJ, González LG, Jiménez M, Boicet T, Enríquez EA, et al. Respuesta agronómica de dos variedades de maíz blanco (Zea mays L.) a la aplicación de QuitoMax®, Azofert® y Ecomic®. Biotecnia. 2018;20(1):3-7. doi: 10.18633/biotecnia.v20i1.522.
Valle J, González D, Meneses P, Saborit R y Delgado C. Estimate of rice crop yield (Oryza sativa L.) in function of different climatic variables, Revista
Ciencias Técnicas Agropecuarias. 2020;29(3): 97-102. Available from: https://www.redalyc.org/journal/932/93264538009/93264538009.pdf.
Hernández A, Pérez J, Bosch D, Castro N. Clasificación de los suelos de Cuba 2015. Instituto Nacional de Ciencias Agrícolas, Cuba: Ediciones INCA. 2015. 93 p. Available from: https://isbn.cloud/9789597023777/clasificacion-de-los-suelos-de-cuba-2015/.
MINAG. Instructivo Técnico Cultivo de Arroz. Instituto de Investigaciones del Arroz, MINAG. 2014. 73 p. Available from: https://isbn.cloud/9789597210863/ instructivo-tecnico-cultivo-de-arroz/.
IRRI. Standard Evaluation System (SES) for Rice. Quinta Edición. Filipinas. 2013. 55p. Available from: https://www.clrri.org/ver2/uploads/SES_5th_edition.pdf.
Monge JE, Loría M. Producción de chile dulce en invernadero: correlación entre densidad de siembra y variables de rendimiento. Tecnología en Marcha. 2021;34(2):161-177. doi: 10.18845/tm.v34i2.4983.
Amegan E, Efisue A, Akoroda M, Shittu A, Tonegnikes F. Genetic diversity of korean rice (Oryza Sativa L.) germplasm for yield and yield related traits for adoption in rice farming system in Nigeria. International Journal of Genetics and Genomics. 2020;8(1):19-28. doi: 10.11648/j.ijgg.20200801.13.
Hasan M, Sarker U. Variability, heritability, character association, and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika. 020;52(2):711-726. doi: 10.2298/GENSR2002711H.
Morejón R, Díaz SH. Relación del rendimiento con otros caracteres en cultivares tradicionales de arroz colectados en Pinar del Río. Cultivos Tropicales. 2018;39(1): 81-86. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362018000100010&lng=es&tlng=pt.
Morejón R, Díaz SH. Asociación de caracteres en colección de recursos fitogenéticos de arroz en Los Palacios. Avances. 2019;21(1):22-31. Available from: http://www.ciget.pinar.cu/ojs/index.php/publicaciones/article/view/414/1406.
López MB, López C, Kohashi J, Miranda S, Barrios EJ, Martínez CG. Rendimiento de grano y sus componentes, y densidad de raíces en arroz bajo riego y secano. Agrociencia. 2018;52(4):563-580. Available from: http://www.scielo.org.mx/ scielo.php?script=sci_arttext&pid=S1405-31952018000400563&lng=es&tlng=es.
Tiwari DN, Tripathi SR, Tripathi MP, Khatri N, Bastola BR. Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture. 2019. Article ID 5975901, 9 p. doi: 10.1155/2019/5975901.
Li R, Li M, Ashraf U, Liu S and Zhang J. Exploring the relationships between yield and yield-related traits for rice varieties released in china from 1978 to 2017. Frontiers Plant Science. 2019; 10:543. doi: 10.3389/fpls.2019.00543.
Osman KA, Abdalla S, Kang K, Sang L, Mohamed A, Ahmed Y, Ismial A. Genetic diversity analysis of elite doubled haploid rice genotypes for yield attributing traits in White Nile State, Sudan. Agricultural Sciences. 2022; 13:330-344. doi: 10.4236/as.2022.133023.
Segura S. Análisis de divergencias interespecíficas con pasifloras andinas. In: Franco TL, Hidalgo R, editores. Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos. IPGRI. Boletín Técnico Nº8. Cali. Colombia. 2003. pp 56-71. Available from: https://www.bioversityinternational.org/fileadmin/_migrated/ uploads/tx_news/An%C3%A1lisis_estad%C3%ADstico_de_datos_de_caracterizaci%C3%B3n_morfol%C3%B3gica_de_recursos_fitogen%C3%A9ticos_894.pdf.
Armijo A, Quevedo JN, García MA. Análisis de la relación genotipo ambiente en el establecimiento de seis variedades de café en la Granja Experimental Santa Inés. Revista Científica Agroecosistemas. 2021;9(1):96-107. Available from: https://aes.ucf.edu.cu/index.php/aes/article/view/454.
González LG, Jiménez MC, Castillo D, Paz I, Cambara AY, Falcón A. Respuesta agronómica del pepino a la aplicación de QuitoMax® en condiciones de organoponía. Centro Agrícola. 2018;45(3):27–31. Available from: http://scielo.sld.cu/scielo. php?script=sci_arttext&pid=S0253-57852018000300027&lang=pt.
Moreno XA, Muñiz L, González J. Efecto de los bioestimulantes Biobras 16 y Quitomax sobre el cultivo del frijol (Phaseolus vulgaris L.) Variedad Delicias-364’ en la agricultura suburbana de Aguada de Pasajeros. Revista científica Agroecosistemas. 2018;6(2):151-160. Available from: https://aes.ucf.edu.cu/index.php/aes/article/ view/208.
Yasser G, Rodríguez D, Camacho L, Carvajal CC, Ávila R, González J, Rodríguez R. Efecto de la aplicación de Biobras-16 sobre el crecimiento y calidad de frutos de piña ‘MD-2’. Cultivos Tropicales, 2021;42(2). Available from: http://scielo.sld.cu/ scielo.php?script=sci_arttext&pid=S0258-59362021000200006.
López I, Martínez L, Pérez G, Cedeño L, Reyes Y, Cárdenas RM, Núñez M, Cabrera JA. Efectos de productos bioactivos en plantas de Cicer arietinum L. Cultivos Tropicales. 2021;42(1). Available from: http://scielo.sld.cu/scielo.php? script=sci_arttext&pid=S0258-59362021000100006.
Morejón R, Díaz SH, Miranda A. Influencia de los bioestimulantes Biobras-16® y QuitoMax® en dos genotipos de arroz. Cultivos Tropicales. 2021;42(4). Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362021000400004.
Morales CG. Uso de bioestimulantes. In: Morales CG, editors. Manual de manejo agronómico del arándano. Instituto de Investigaciones Agropecuarias. INIA Raihuén. Chile. BOLETÍN INIA/No 371; 2017, p 43-47. ISSN 0717-4829. Available from: http://biblioteca.inia.cl/medios/biblioteca/boletines/NR40907.pdf.
Chakrabarty SK, Joshi MA, Singh Y, Maity A, Vashisht V, Dadlani M. Characterization and evaluation of variability in farmers’ varieties of rice from West Bengal. Indian Journal of Genetics and Plant Breeding (The). 2012;72(2):136-42. Available from: https://scholar.google.com/citations?view_op=view_citation &hl= en&user=4b1kjDoAAAAJ&citation_for_view=4b1kjDoAAAAJ:rO6llkc54NcC.
Sarker U, Islam Mg, Rabbani S. Variability, heritability and genetic association in green amaranth (Amaranthus tricolor). Spanish Journal of Agricultural Research. 2015;13(2):1-8. doi: 10.5424/sjar/2015132-6843.