Water footprint estimation in soybean (Glycine max (L.) Merrill) cultivation
Main Article Content
Abstract
The water footprint (WF) of a product or service is defined as the total amount of water used throughout the entire production process. Particularly in agricultural products, the largest amount of water is used for irrigation; therefore, quantifying it is crucial for raising public awareness about water use and protecting water resources. Soybeans are an important crop as a source of high-quality protein and oil. Furthermore, due to their biological nitrogen fixation capacity (BNF), they are a significant crop for reducing the application of nitrogen (N) fertilizers while maintaining high yields. To estimate the water footprint (WF) of the crop, an experiment was conducted in the Central Area of INCA (National Institute of Agricultural Science). Were planted 1.8 ha with the CIGB-CC6 cultivar at planting density of 240 000 plants per ha. The CropWat 8.0 program was used to calculate irrigation and effective rainfall requirements. The green, blue, and gray components of the WF were estimated under these irrigation and cultivation conditions. Among the main results, it was noted that the yield obtained, 1380 kg ha⁻¹, is considered relatively low, and there was a greater dependence on irrigation than on rainfall. The estimated water footprint for the soybean crop was 3.581 m³ kg⁻¹.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Esquivel A, Salgado MC. Huella hídrica de producción, consumo y per cápita de México, Estados Unidos y Canadá. In: Sarmiento JF [Coord.] Nuevas territorialidades-gestión de los territorios y recursos naturales con sustentabilidad ambiental. UNAM-AMECIDER, México, 2023. pp. 585-600. ISBN 978-607-30-8314-0 (UNAM), 978-607-8632-40-4 (AMECIDER). Available from: https://ru.iiec.unam.mx:80/id/eprint/6071
Wang L, Yan C, Zhang W, Zhang Y. Water footprint assessment of agricultural crop productions in the dry farming region, Shanxi province, Northern China. Agronomy. 2024, 14, 546. Available from: https://doi.org/10.3390/agronomy14030546.
Sunitha S, Akash A U, Sheela M N, Suresh Kumar J. The water footprint of root and tuber crops. Environment, Development and Sustainability. 2024, 26(2), p: 3021-3043, February. Available from: https://doi.org/10.1007/s10668-023-02955-1
Egea G, Castro-Valdecantos P, Gómez-Durán E, Munuera T, Domínguez-Niño J M, Nortes P A. Impact of irrigation management decisions on the water footprint of processing tomatoes in southern Spain. Agronomy. 2024, 14, 1863. Available from: https://doi.org/10.3390/agronomy1408186310. 4.
Hoekstra A Y, Chapagain A K, Aldaya M M, Mekonnen M M. The water footprint assessment manual: setting the global standard. London/Washington, DC: Earthscan, 2011.vailableat: Available from: https://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf. Accessed on: Mar 20, 2018.
Oweis, T, Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80(1-3), 57-73. Available from: https://doi.org/10.1016/j.agwat.2005.07.004
González M C, Guillama R. CUVIN-22. Cultivar de soya (Glycine max Merril) de grano negro. Cultivos Tropicales. 2021, 42, (4), supl. 1, e02 octubre-diciembre. Available from: http://ediciones.inca.edu.cu.
Setubal I S, Andrade Júnior A S, Silva S P, Rodrigues A C, Bonifácio A, Silva E H, Vieira P F, Miranda R S, Cafaro La Menza N, Souza H A. Macro and micro-nutrient accumulation and partitioning in soybean affected by water and nitrogen supply plants. 2023, 12, 1898. Available from: https://doi.org/10.3390/plants12091898.
Wijewardana C, Reddy K R, Alsajri F A, Irby J T, Krutz J, and B Golden. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrigation Science. 2018, 36(4-5):241-255. Available from: DOI: http://doi.org/10.1007/50027-018-0580-1
Brevedan R. and Egli D B. Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci. 2003, 43:2083-2088. Available from: DOI: http://doi.org/0.2135/cropsci2003.2083
Saad A M, Saad M, Maaty A E, El-Hadary A. Biochemical studies on some soybean cultivars under water stress conditions. Journal of Plant Production, Mansoura Univ. 2023, 14 (3):107-115. Journal homepage. Available from: www.jpp.journals.ekb.eg
Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B and Xie F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry. 2020, 146: 1-12. Available from: DOI: http://doi.org/10.1016/j.plaphy.2019.11.003
.Hernández A, Pérez J, Bosch D, Castro N. Clasificación de los suelos de Cuba 2015, edit. Ediciones-INCA, Mayabeque, Cuba, 2015, p. 93, ISBN 978-959-7023-77-7.
Food and Agriculture Organization for the United Nations (FAO). CROPWAT 8.0 Model, FAO, Rome. Available from: http://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 1 September 2020).
Norma Obligatoria Salvadoreña de Aguas Residuales. Descargadas a un Cuerpo Receptor, CONACYT NSO:13.49.01:09, 2009. Available from: https://osartec.gob.sv
FAO & UN Water. Progress on level of water stress. Global status and acceleration needs for SDG Indicator 6.4.2, 2021. FAO, Rome. Available from: https://doi.org/10.4060/cb6241en.
Qiao M, Hong C, Jiao Y, Hou S, Gao H. Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. Plants.2024, 13, 1808. Available from: https://doi.org/10.3390/plants13131808.
Winck J E, Sarmento L F, Foloni J S, Henning L M, Nepomuceno A L, Melo C L, Farías, J R, Neumaier N, Barbosa A, Catuchi T A, Zanon A J, Streck N A. Growth and transpiration of soybean genotypes with AtAREB1 transcription factor for tolerance to water deicit. Plant Growth Regulation. 2023. Available from: https://doi.org/10.1007/s10725-023-01101-1.
Yanes L A, Calero A, Valdivia W B. y Bianco L. Influencia de altas densidades de plantas en la productividad de la soya. Universidad & Ciencia, 2023, 12 (3), pp. 155-166. Available from: https://doi.org/10.5281/zenodo.11528387.
Mederos A. y Ortiz R. INCASoy-2, nuevo cultivar de soya (Glycine max L.). Cultivos Tropicales. 2021, 42, (4) pp. e08. Available from: http://ediciones.inca.edu.cu.
González M C, Guillama R. CUVIN-22. Cultivar de soya (Glycine max Merril) de grano negro. Cultivos Tropicales. 2021, 42, (4), supl. 1, e02 octubre-diciembre. Available from: http://ediciones.inca.edu.cu.
Roján O, Maqueira L A, Santana I, Miranda, C. A. y Núñez M. Productividad de cultivares de soya en dos épocas de siembra. Cultivos Tropicales, 2022, 43, (1), e05 enero-marzo. Available from: http://ediciones.inca.edu.cu.
Marrero O, Hechavarría Y, SANTOS E. Respuesta morfoagronómica en variedades de Soya en suelo Fluvisol del municipio de Cauto Cristo (Original). Redel. Revista Granmense de Desarrollo 22 Local. Cuba. 2021, 5, (2), pp. 348-358. Available from: http://revistas.unica.cu/uniciencia.
Staniak M, Szpunar-Krok E, Kocira A. Responses of soybean to selected abiotic stresses—photoperiod, Temperature and Water. Agriculture, 2023, 13, 146. Available from: https://doi.org/10.3390/griculture13010146.
Rodríguez M, Castro M, David D, Martins K, Dias C. Water Footprint of soybean, cotton, and corn crops in the western region of Bahia State. Eng Sanit Ambient.2021, 26 (5) | set/out 2021 | 971-978. Available from: https://doi.org/10.1590/s1413-41522020041.
López C, Exebio A A, Flores J, Juárez A. Índice de estrés hídrico (IEH) e índice de servicio del riego (ISR) en función de la huella hídrica de los cultivos en los módulos de riego en México. Ciencia Latina Revista Científica Multidisciplinar. Marzo-Abril, 2023, 7, (2): Pp.11303-113331. Available from: https://doi.org/10.37811/cl_rcm.v7i2.6214.
Kumban A, Usubharatana P, Phungrassami H. Water footprint of local plant-based protein in Thailand. Journal of Applied Science and Engineering, 2022, 26, (12), Pp. 1677-1688. Available from: http://dx.doi.org/10.6180/jase.202312_26(12).0001.