Compost application and biofertilization with arbuscular mycorrhizal fungi in cuatomate (Solanum glauscescens Zucc) nursery

Main Article Content

Gabriel López-Salvador
Fortunato Jiménez-Cruz
Antonio Gómez-Salazar
Pedro J. González-Cañizares
Eduardo Jerez-Mompié
Nicolás Medina-Basso

Abstract

Cuatomate (Solanum glauscescens Zucc) is an important crop for the Mixteca Poblana, and the availability of technologies to increase its productivity is a priority for producers in the region. An experiment was conducted to evaluate the effect of compost addition and biofertilization with arbuscular mycorrhizal fungi (AMF) on cuatomate during the nursery stage. Twelve treatments, resulting from the combination of four substrates prepared with different soil:compost ratios and inoculation with AMF strains Glomus cubense, Rhizoglomusi rregulare and a control without inoculation, were studied in a completely randomized design, with factorial arrangement and ten replications, and indicators of mycorrhizal performance and plant growth were evaluated. No interaction was found between soil:compost ratios and biofertilization with AMF for mycorrhizal and growth variables. No response to AMF inoculation on plant growth was observed either. The greatest height, stem diameter and number of leaves were achieved with soil:compost ratios 0.50:0.50 and 0.25:0.75 v:v. Second order regression equations with high R2 values were found between N-NO3, assimilable P and exchangeable K contents of the substrates and plant height and leaf number. It is concluded that the mixture of soil and compost in a 0.50:0.50 ratio is a suitable substrate for cuatomate cultivation during the nursery stage. Further studies on the mycorrhization of the cuatomate crop are recommended.

Article Details

How to Cite
López-Salvador, G., Jiménez-Cruz, F., Gómez-Salazar, A., González-Cañizares, P. J., Jerez-Mompié, E., & Medina-Basso, N. (2022). Compost application and biofertilization with arbuscular mycorrhizal fungi in cuatomate (Solanum glauscescens Zucc) nursery. Cultivos Tropicales, 43(3), https://cu-id.com/2050/v43n3e04. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1671
Section
Original Article

References

Hernández-Rojas CJ, Sandoval-Castro E, Gutiérrez-Rangel N, Pineda-Pineda J, Sánchez-Vélez A, Espinoza-Hernández V, et al. Concentración de la solución nutritiva y rendimiento de “cuatomate” (Solanum glaucescens Zucc,). Revista mexicana de ciencias agrícolas. 2018;9(1):123–36. doi:10.29312/remexca.v9i1.853

Gómez Salazar, Antonio, Vidal Corona AM, López Salvador G, De la Cruz Meléndez R, Ortiz Sarabia GF. La propagación del cuatomate Solanum glaucescens Zucc [Internet]. 1st ed. Altres Costa-Amic Editores; 2019 [cited 13/07/2022]. 64 p. Available from: https://isbnmexico.indautor.cerlalc.org/catalogo.php?mode=detalle&nt=285315

Priadi D, Mulyaningsih ES. Effects of Compost Type and Rootstock Length on Fruit and Vegetable Seedlings Growth in the Nursery. Biosaintifika: Journal of Biology & Biology Education. 2016;8(3):301–7. doi:10.15294/biosaintifika.v8i3.7292

Ariyanti M, Rosniawaty S, Dewi IR, Fernando A. The Growth Response of Oil Palm Seedling at Main Nursery Against Watering at Different Volume and Frequency and Against Provision of Compost. International Journal of Sciences: Basic and Applied Research (IJSBAR). 2018;37(3):226–33.

Asif M, Saqib H, Ahmad I, Rashid M, Farooq T, Asif M, et al. Effect of Compost Application on the Growth of Acacia nilotica. Cercetari Agronomice in Moldova. 2019;52:66–73. doi:10.2478/cerce-2019-0007

Shah R, Abid M, Qayyum MF. Effects of Composted and Vermicomposted Sugarcane Industry Wastes and Farm Manure on Tomato Quality and Yield. Mehran University Research Journal of Engineering and Technology. 2020;39(2):380–9. doi:10.22581/muet1982.2002.14

Jiménez-Moreno MJ, Moreno-Márquez M del C, Moreno-Alías I, Rapoport H, Fernández-Escobar R. Interaction between mycorrhization with Glomus intraradices and phosphorus in nursery olive plants. Scientia Horticulturae. 2018;233:249–55. doi:10.1016/j.scienta.2018.01.057

Tadeu H, Carneiro MA, Miranda M, Alho L, Neto P, Viana Á. Influence of Arbuscular Mycorrhizal Fungi and Phosphorus Doses in the Production of Parkia nitida (Miquel) in Seedling Nursery in the South of Amazonas. Journal of Experimental Agriculture International. 2018;28:1–10. doi:10.9734/JEAI/2018/44675

FAO. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update. 2015;106:203.

Fertilab. Laboratorio mexicano de análisis agrícolas,Diagnóstico de fertilidad del suelo,Guanajuato, México,2018 [Internet]. https://www.fertilab.com.mx. 2018 [cited 31/05/2022]. Available from: https://www.fertilab.com.mx

Yakelín R, Dalpé Y, Séguin S, Suárez K, Felix F, Espinosa R. Glomus cubense sp. nov., an arbuscular mycorrhizal fungus from Cuba. Mycotaxon -Ithaca Ny-. 2011;118:93–4666. doi:10.5248/118.337

Sieverding E, Silva G, Berndt R, Oehl F. Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon -Ithaca Ny-. 2014;129(2):373–86. doi:10.5248/129.373

Rodríguez Yon Jy, Arias Pérez L, Medina Carmona A, Mujica Pérez Y, Medina García LR, Fernández Suárez K, et al. Alternativa de la técnica de tinción para determinar la colonización micorrízica. Cultivos Tropicales. 2015;36(2):18–21.

Giovannetti M, Mosse B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytologist. 1980;84(3):489–500. doi:https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Trouvelot A. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. Physiological and genetical aspects of mycorrhizae. 1986;217–21.

Herrera RA, Ferrer RL, Furrazola E, Orozco MO. Estrategia de funcionamiento de las micorrizas VA en un bosque tropical.Biodiversidad en Iberoamérica. Ecosistemas, Evolución y Procesos sociales.(Eds. Maximina Monasterio) programa Iberoamericano de Ciencia y Tecnología para el desarrollo. Subprograma XII, Diversidad Biológica, Mérida. 1995;

SPSS. Statistical software, version 25, SPSS Institute, Chicago, Illinois, 2017, [Internet]. 2017 [cited 08/07/2022]. Available from: https://www.ibm.com/support/pages/www.ibm.com/support/pages/downloading-ibm-spss-statistics-25

Paneque VM, Calaña JM. La fertilización de los cultivos. Aspectos teórico-prácticos para su recomendación. La Habana, Cuba: INCA; 2001 p. 29.

Garbanzo G, Molina E, Serrano E, Ramírez F. Efecto de mezclas de fibra semicomposteada con suelo en el crecimiento y la tolerancia de enfermedades en vivero de palma aceitera. Agronomía Costarricense [Internet]. 2017 [cited 08/07/2022];41(2). doi:10.15517/rac.v41i2.31299

Suliza Salamat S, Ali Hassan M, Shirai Y, Husni A, Arifin I, Shahkhirat Norizan M. Application of compost in mixed media improved oil palm nursery’s secondary root structure thereby reducing the fertilizer requirement for growth. 2019;27(3):39–49.

Quaye A, Konlan S, Arthur A, Pobee P, Dogbatse J. Effect of media type and compost mixtures on nutrient uptake and growth of cocoa Theobroma cacao L.) seedling in the nursery. 2019;14(1):11–21.

Bayoumi YA, El-Henawy AS, Abdelaal KAA, Elhawat N. Grape Fruit Waste Compost as a Nursery Substrate Ingredient for High-Quality Cucumber (Cucumis sativus L.) Seedlings Production. Compost Science & Utilization. 2019;27(4):205–16. doi:10.1080/1065657X.2019.1682086

Mladenov M. Chemical composition of different types of compost. Journal of Chemical Technology and Metallurgy. 2018;53(4):712–6.

Głąb T, Żabiński A, Sadowska U, Gondek K, Kopeć M, Mierzwa–Hersztek M, et al. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma. 2018;315:27–35. doi:10.1016/j.geoderma.2017.11.034

Strachel R, Wyszkowska J, Baćmaga M. The Role of Compost in Stabilizing the Microbiological and Biochemical Properties of Zinc-Stressed Soil. Water, Air, & Soil Pollution. 2017;228(9):349. doi:10.1007/s11270-017-3539-6

Burges A, Fievet V, Oustriere N, Epelde L, Garbisu C, Becerril JM, et al. Long-term phytomanagement with compost and a sunflower – Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Science of The Total Environment. 2020;700:1–10. doi:10.1016/j.scitotenv.2019.134529

Machineski GS, Victola CAG, Honda C, Machineski O, de Fátima Guimarães M, Balota EL. Effects of arbuscular mycorrhizal fungi on early development of persimmon seedlings. Folia Horticulturae. 2018;30(1):39–46.

Anguiby BLA, Bomisso EL, N’goran KSB, Ake S. Supply of Compost and Arbuscular Mycorrhizal Fungi for Enhancing Quality of Ceiba pentandra (Kapok Tree) Seedlings. 2020;32(9):1–14.

Jiang Q, Li Q, Chen Y, Zhong C, Zhang Y, Chen Z, et al. Arbuscular Mycorrhizal Fungi Enhanced Growth of Magnolia macclurei (Dandy) Figlar Seedlings Grown under Glasshouse Conditions. Forest Science. 2017;63(4):441–8. doi:10.5849/forsci.2016-004

Djenatou P, Dooh JPN, Philippe K, Mangaptche ELN. Evaluation of the Inoculation Effect of Arbuscular Mycorrhizal Fungi on the Growth of Cocoa Seedlings (Theobroma cacao L.) in the Nursery. International Journal of Sciences. 2020;9(07):6–13.

Davidson BE, Novak SJ, Serpe MD. Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting. Mycorrhiza. 2016;26(6):595–608. doi:10.1007/s00572-016-0696-1

Espinosa R, Martín Alonso GM, Simo González J, Pentón Fernández G, Rubido M, Pedroso J, et al. Benefits of joint management of green manure and mycorrhizal inoculants in crop production. Tropical and Subtropical Agroecosystems. 2020;23(97):1–20.

Simo JE, Rivera RA, Martinez LA, Martin GM. The integration of AMF inoculants, green manure and organo-mineral fertilization, in banana plantations on Calcic haplic phaeozems. Tropical and Subtropical Agroecosystems. 2020;23(1):1–15.

Reyes R, Cañizares PJG, Pedroso JFR. Biofertilization with Azospirillum brasilense, and Rhizoglomus irregulare and reduction of nitrogen fertilization in Urochloa hybrid cv. Mulatto II. Cuban Journal of Agricultural Science. 2020;54(4):1–10.

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)