Effect of deficit irrigation controlled in maize plant development

Main Article Content

José Miguel Dell’ Amico Rodríguez
Donaldo Medardo Morales Guevara
Lilisbet Guerrero Domínguez
Arazay Santa Cruz Suarez

Abstract

Maize is considered one of the main crops that contribute to food and nutritional security for a large part of the world population and drought represents one of the phenomena that most negatively impacts agri-food production and therefore the yield of this cereal. The research was carried out under semi-controlled conditions in concrete containers planted with the maize P7928 cultivar and three controlled deficit irrigation (CDI) treatments were studied, with irrigation suspensions for 15 days in three stages of crop development (SC, SF and SLL)) and a control treatment irrigated at 100 % of the ETc. At the end of the irrigation suspension periods, evaluations of soil moisture, physiological and yield indicators were carried out. The statistical analysis of the data was carried out using the IBM SPSS Statistics 19 program. The results showed that the suspension of irrigation for 15 days in the three stages (SC), (SF) and (SLL) to plants of the maize cultivar P7928 caused significant decreases in soil moisture and RWC. In addition, in SC it reduced the aerial dry mass, considerably the 100 grains mass and the grams per plant. In SF, it reduced stem length, RCC, severely 100grains mass, and yield in grams per plant, and in SLL, only RCC.

Article Details

How to Cite
Amico Rodríguez, J. M. D., Morales Guevara , D. M., Guerrero Domínguez , L., & Santa Cruz Suarez, A. (2025). Effect of deficit irrigation controlled in maize plant development. Cultivos Tropicales, 46(1), https://cu-id.com/2050/v46n1e03. Retrieved from https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1835
Section
Original Article

References

FAOSTAT (División de Estadística de la FAO. Datos sobre alimentación y agricultura [Internet]. 2021. Available from: http://www.fao.org/faostat/es/#home

Pokhrel S. Effects of drought stress on the physiology and yield of the maize: A review. Food and Agri Economics Review [Internet]. 2021;1(1):36–40. Available from: https://www.researchgate.net/publication/355942108_EFFECTS_OF_DROUGHT_STRESS_ON_THE_PHYSIOLOGY_AND_YIELD_OF_THE_MAIZE_A_REVIEW

Cerna MJG, Colbert RW, Rodriguez IY, Sotomayor JCR. Comportamiento agronómico de accesiones de maíz de Honduras bajo estrés de sequía. CEIBA [Internet]. 2021 Nov 13 [cited 2024 Nov 27]; (Edición Zamorano Investiga):36–51. Available from: https://revistas.zamorano.edu/CEIBA/article/view/1267

Poole N, Donovan J, Erenstein O. Viewpoint: Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy [Internet]. 2021 Apr 1 [cited 2024 Nov 27];100:101976. Available from: https://www.sciencedirect.com/science/article/pii/S0306919220301809

Ottaiano L, Di Mola I, Cirillo C, Cozzolino E, Mori M. Yield Performance and Physiological Response of a Maize Early Hybrid Grown in Tunnel and Open Air under Different Water Regimes. Sustainability [Internet]. 2021 Jan [cited 2024 Nov 27];13(20):11251. Available from: https://www.mdpi.com/2071-1050/13/20/11251

Calvo-Solano OD, Quesada LE, Hidalgo H, Gotlieb Y. Impactos de las sequías en el sector agropecuario del Corredor Seco Centroamericano. Agron Mesoamericana [Internet]. 2018 [cited 2024 Nov 27];29(3):695. Available from: https://www.researchgate.net/publication/327405787_Impactos_de_las_sequias_en_el_sector_agropecuario_del_Corredor_Seco_Centroamericano

Imbach P, Beardsley M, Bouroncle C, Medellin C, Läderach P, Hidalgo H, et al. Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue. Clim Change [Internet]. 2017 Mar 1 [cited 2024 Nov 27];141(1):1–12. Available from: https://doi.org/10.1007/s10584-017-1920-5

Iglesias YC, Robaina FG, Granda GH, Rivero LH, Zayas EC. Impacto del cambio climático en el rendimiento del maíz sembrado en suelo Ferralítico Rojo compactado. Rev Ing Agríc [Internet]. [cited 2024 Nov 27];10(1). Available from: https://www.redalyc.org/journal/5862/586262449008/html/

Hansen J, Hellin J, Rosenstock T, Fisher E, Cairns J, Stirling C, et al. Climate risk management and rural poverty reduction. Agric Syst [Internet]. 2019 Jun 1 [cited 2024 Nov 27];172:28–46. Available from: https://www.sciencedirect.com/science/article/pii/S0308521X17307230

Gheysari M, Sadeghi SH, Loescher HW, Amiri S, Zareian MJ, Majidi MM, et al. Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agric Water Manag [Internet]. 2017 Mar 1 [cited 2024 Nov 27];182:126–38. Available from: https://www.sciencedirect.com/science/article/pii/S0378377416305121

Puebla JH, Seijas TL, Robaina FG. El uso del agua en la agricultura en Cuba. Rev Ing Agríc [Internet]. 2011 [cited 2024 Nov 27];1(2):1–7. Available from: https://www.redalyc.org/articulo.oa?id=586262033008

Zayas EC, González RC, Puebla JH, Robaina FG, Rodríguez SC, García OS. Efecto de los polímeros en la economía del agua. Rev Ing Agríc [Internet]. [cited 2024 Nov 27];10(1). Available from: https://www.redalyc.org/journal/5862/586262449004/html/

Muqadas S, Ali Q, Malik A. Genetic association among seedling traits of zea mays under multiple stresses of salts, heavy metals and drought

Biol Clin Sci Res J [Internet]. 2020 Dec 12;2020. Available from: https://www.researchgate.net/publication/354663982_GENETIC_ASSOCIATION_AMONG_SEEDLING_TRAITS_OF_ZEA_MAYS_UNDER_MULTIPLE_STRESSES_OF_SALTS_HEAVY_METALS_AND_DROUGHT

Badr A, El-Shazly HH, Tarawneh RA, Börner A. Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. Plants Basel Switz. 2020 Apr 29;9(5):565.

Domínguez A, Martínez RS, de Juan JA, Martínez-Romero A, Tarjuelo JM. Simulation of maize crop behavior under deficit irrigation using MOPECO model in a semi-arid environment. Agric Water Manag [Internet]. 2012 May 1 [cited 2024 Nov 27];107:42–53. Available from: https://www.sciencedirect.com/science/article/pii/S0378377412000224

Akinwale RO, Awosanmi FE, Ogunniyi OO, Fadoju AO. Determinants of drought tolerance at seedling stage in early and extra-early maize hybrids. Maydica [Internet]. 2017 [cited 2024 Nov 27];62(1):9–9. Available from: https://journals-crea.4science.it/index.php/maydica/article/view/1563

Mendoza-Pérez C, Sifuentes-Ibarra E, Ojeda-Bustamante W, Macías-Cervantes J. Response of surface-irrigated corn to regulated deficit irrigation. Ing Agríc Biosist [Internet]. 2016 Jun [cited 2024 Nov 27];8(1):29–40. Available from: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-40262016000100029&lng=en&nrm=iso&tlng=en

Hernández Jiménez A, Bosch Infante D, Pérez-Jiménez JM, Castro Speck N. Clasificación de los suelos de Cuba 2015 [Internet]. Instituto Nacional de Ciencias Agrícolas. 2015 [cited 2024 Sep 19]. 91 p. Available from: https://isbn.cloud/9789597023777/clasificacion-de-los-suelos-de-cuba-2015/

FAO. Estudio FAO Riego y Drenaje 56. Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Available from: https://www.fao.org/4/x0490s/x0490s00.htm

Song L, Jin J, He J. Effects of Severe Water Stress on Maize Growth Processes in the Field. Sustainability [Internet]. 2019 Jan [cited 2024 Nov 27];11(18):5086. Available from: https://www.mdpi.com/2071-1050/11/18/5086

Shafique F, Ali Q, Malik A. Effects of water deficit on maize seedlings growth traits. 2020 Sep 16;2020:1–7. Available from: https://www.researchgate.net/publication/344272564_Effects_of_water_deficit_on_maize_seedlings_growth_traits

Ma X, He Q, Zhou G. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds. Front Plant Sci [Internet]. 2018;9:511. Available from: https://www.researchgate.net/publication/324876180_Sequence_of_Changes_in_Maize_Responding_to_Soil_Water_Deficit_and_Related_Critical_Thresholds

Sifuentes Ibarra E, Ojeda Bustamante W, Macías Cervantes J, Mendoza Pérez C, Preciado Rangel P. Déficit hídrico en maíz al considerar fenología, efecto en rendimiento y eficiencia en el uso del agua. Agrociencia [Internet]. 2021 [cited 2024 Nov 27];55(3):209–26. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=7918116

Anjum S, Xie X yu, Wang L chang, Saleem M, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res [Internet]. 2011 May 1;6. Available from: https://www.researchgate.net/publication/268428110_Morphological_physiological_and_biochemical_responses_of_plants_to_drought_stress

Li Y, Tao H, Zhang B, Huang S, Wang P. Timing of Water Deficit Limits Maize Kernel Setting in Association With Changes in the Source-Flow-Sink Relationship. Front Plant Sci [Internet]. 2018 Oct 22 [cited 2024 Nov 27];9. Available from: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2018.01326/full

Tariq J, Usman K. Regulated deficit irrigation scheduling of maize crop. Sarhad J Agric [Internet]. 2009 Jan 1;25. Available from: https://www.researchgate.net/publication/266032774_Regulated_deficit_irrigation_scheduling_of_maize_crop

Peña CB, Castro-Rivera R, Aguilar G, Cruz E, Solís MM, Lara JP. Reacciones Fisiológicas y Crecimiento Inicial De Maíz Tuxpeño Con Vermicompost y Suspensión De Riego. Trop Subtrop Agroecosystems [Internet]. [cited 2024 Nov 27];25(13). Available from: https://www.academia.edu/110755496/Reacciones_Fisiol%C3%B3gicas_y_Crecimiento_Inicial_De_Ma%C3%ADz_Tuxpe%C3%B1o_Con_Vermicompost_y_Suspensi%C3%B3n_De_Riego

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)