Biostimulant effect of spirulina (Arthrospira platensis) on the initial vegetative development of rice seedlings (Oryza sativa)
Main Article Content
Abstract
The study evaluated the biostimulant effect of spirulina (Arthrospira platensis) on the early development of rice seedlings (Oryza sativa), under a completely randomized design with five treatments: T1 (100 %), T2 (75 %), T3 (50 %), T4 (25 %), and T5 (control, 0 %). The seeds were sown in pots to break dormancy and received applications of spirulina on days 0, 5, 10, and 15 after sowing. Germination rate, root length, height, vigor index IV, and fresh and dry biomass were evaluated. The results showed that spirulina significantly favored germination (≥93 %), with the maximum in T1 (97 %). Root development reached 16 cm in T1 compared to 9 cm in the control. Height was greater in T1 and T2 (20 and 19 cm respectively), as was vigor index IV, with T1 standing out (3492). In terms of biomass, T1 had the highest values (fresh: 6.57 g; dry: 2.7 g), exceeding the control (3.85 g and 1.42 g). Dry matter remained stable in treatments with spirulina (≈41 %), higher than the control (36.9 %). Concluding that A. platensis is an effective biostimulant, with dose-dependent effects, its application is recommended in early stages of development to establish the optimal threshold for its use.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, they are the sole responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. They are accepted to publish original scientific papers, research results of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of equipment, instruments or specific materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the publisher.
References
Minello LVP, Kuntzler SG, Lamb TI, Neves C de O, Berghahn E, da Paschoa RP, et al. Rice plants treated with biochar derived from Spirulina (Arthrospira platensis) optimize resource allocation towards seed production. Front Plant Sci [Internet]. 2024;15:1422935. Available from: https://doi.org/10.3389/fpls.2024.1422935
Arahou F, Lijassi I, Wahby A, Rhazi L, Arahou M, Wahby I. Spirulina-based biostimulants for sustainable agriculture: Yield improvement and market trends. BioEnergy Res [Internet]. 2023;16(3):1401-16. Available from: https://doi.org/10.1007/s12155-022-10537-8
Godlewska K, Michalak I, Pacyga P, Baśladyńska S, Chojnacka K. Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World J Microbiol Biotechnol [Internet]. 2019;35(6):80. Available from: https://doi.org/10.1007/s11274-019-2653-6
El-Shazoly RM, Aloufi AS, Fawzy MA. The potential use of arthrospira (Spirulina platensis) as a biostimulant for drought tolerance in wheat (Triticum aestivum L.) for sustainable agriculture. J Plant Growth Regul [Internet]. 2025;44(2):686-703. Available from: https://doi.org/10.1007/s00344-024-11473-x
Ali S, Yu J, Qu Y, Wang T, He M, Wang C. Potential Use of Microalgae Isolated from the Natural Environment as Biofertilizers for the Growth and Development of Pak Choi (Brassica rapa subsp. chinensis). Agriculture [Internet]. 2025;15(8):863. Available from: https://doi.org/10.3390/agriculture15080863
Bauenova MO, Sarsekeyeva FK, Sadvakasova AK, Kossalbayev BD, Mammadov R, Token AI, et al. Assessing the efficacy of cyanobacterial strains as Oryza sativa growth biostimulants in saline environments. Plants [Internet]. 2024;13(17):2504. Available from: https://doi.org/10.3390/plants13172504
Refaay DA, El-Marzoki EM, Abdel-Hamid MI, Haroun SA. Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. J Appl Phycol [Internet]. 2021;33(6):3807-15. Available from: https://doi.org/10.1007/s10811-021-02584-z
Arahou F, Hassikou R, Arahou M, Rhazi L, Wahby I. Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquac Int [Internet]. 2021;29(5):2009-20. Available from: https://doi.org/10.1007/s10499-021-00730-5
Llerena-Ramos LT, Rodríguez-Rodríguez S, Reyes-Pérez JJ, López-Álvarez S, Jiménez-Pizarro M, Espinosa-Palomeque B. Microorganismos benéficos y compost líquido enriquecido con silicio: Alternativas para la producción agroecológica del cultivo de arroz. Terra Latinoam [Internet]. 2025;43. Available from: https://doi.org/10.28940/terra.v43i.2108
Santoya Castro YO, González Gómez LG, Jiménez Arteaga MC, Paz Martínez I, Falcón Rodríguez A. Efecto del Quitomax sobre las principales variables asociadas al rendimiento en el cultivo del arroz Variedad IACUBA 41. CCT [Internet]. 2024 Dec. 1 [cited 2025 Nov. 23];2(2). Available from: https://cct-uleam.info/index.php/chone-ciencia-y-tecnologia/article/view/111
Peroza Sierra J, Peña-Murillo F, Perez Cordero C, López Mendoza J, Hernández Guzmán L. Efectos de seis sistemas de labranza en el cultivo de arroz (Oryza sativa L.) en el valle del Sinú en Colombia. Temas Agrarios [Internet]. 2024 [citado 23 Nov 2025];29(1):31. Available from: https://revistas.unicordoba.edu.co/index.php/temasagrarios/issue/view/259/64
Prasetyo T, Setiani C, Wulanjari ME. Cost efficiency and farmers’ profit in using certified rice seeds and non-certified rice seeds in rainfed rice field. In: E3S Web of Conferences [Internet]. EDP Sciences; 2022. p. 2027. Available from: https://doi.org/10.1051/e3sconf/202236102027
Elnajar M, Eltanahy E, Abdelmoteleb M, Aldesuquy H. Enhancing drought resistance in wheat (Triticum aestivum L.) seedlings by aqueous extract of Spirulina platensis. Mansoura J Biol [Internet]. 2023;65(4):24-34. Available from: https://doi.org/10.21608/mjb.2023.449564
Mostafa MM, Hammad DM, Reda MM, El-Sayed AE-KB. Water extracts of Spirulina platensis and Chlorella vulgaris enhance tomato (Solanum lycopersicum L.) tolerance against saline water irrigation. Biomass Convers Biorefinery [Internet]. 2024;14(17):21181-91. Available from: https://doi.org/10.1007/s13399-023-04460-x
Yousfi S, Marín J, Parra L, Lloret J, Mauri P V. A rhizogenic biostimulant effect on soil fertility and roots growth of turfgrass. Agronomy [Internet]. 2021;11(3):573. Available from: https://doi.org/10.3390/agronomy11030573
Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman MEH. Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus. Agriculture [Internet]. 2022;12(6):781. Available from: https://doi.org/10.3390/agriculture12060781
Pratiwi IW, Rahmawati FA, Samtani K, Atuilah N, Hidayatullah RA, Alfiah NA, et al. Vigor Enhancement of tomato (Solanum lycopersicum) using Spirulina platensis as seed priming Agent. Biota J Ilm Ilmu-Ilmu Hayati [Internet]. 2025;148-60. Available from: https://doi.org/10.24002/biota.v10i2.10220
Gharib FAEL, Osama K, Sattar AMA El, Ahmed EZ. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Sci Rep [Internet]. 2024;14(1):1398. Available from: https://doi.org/10.1038/s41598-023-50040-4
Ismaiel SAR, Khedr FG, Metwally AG, Soror AFS. Effect of biostimulants on soil characteristics, plant growth and yield of Pea (Pisum sativum L.) under field conditions. Plant Sci Today [Internet]. 2022;9:650-7. Available from: https://doi.org/10.14719/pst.1748
Jeres-Caguana GA, Quiñonez-Portocarrero DK, Macías-Rojas HA, Vera-Rodriguez JH, Lucas-Vidal LR. Efecto bioestimulante de algas (Arthrospira platensis y Durvillaea antarctica) sobre el desarrollo de plantas de maíz durante la etapa vegetativa V3. Hombre, Cienc y Tecnol [Internet]. 2025;29(2):100-10. Available from: http://hct.cigetgtmo.co.cu/revistahct/index.php/htc/article/view/1511
Palacios-Mayorga AS, Humberto JHJ, Michelle CMC, Mariuxi SMS, David JDJ. Aislamiento, caracterización y producción de Arthrospira platensis. Multidiscip Collab J [Internet]. 2025;3(2):13-23. Available from: https://doi.org/10.70881/mcj/v3/n2/49
Gutierrez Almeida A, Núñez Vázquez M de la C, Reyes Guerrero Y, Pérez Domínguez G, Martínez González L. Caracterización química y evaluación de la actividad biológica de extractos de Spirulina. Cultivos Trop [Internet]. 2025 [citado 23 Nov 2025];46(1):[página(s) faltante(s)]. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362025000100005&lng=es&tlng=es
Gutierrez Almeida A, Reyes Guerrero Y, Núñez Vázquez M de la C. Métodos para la obtención de extractos de macroalgas y cianobacterias, evaluación de sus actividades biológicas. Cultivos Tropicales [Internet]. 2024 [citado 23 Nov 2025];45(1):[página(s) faltante(s)]. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362024000100008&lng=es&tlng=es